Visual Data Mining Theory, Techniques and Tools for Visual Analytics /

The importance of visual data mining, as a strong sub-discipline of data mining, had already been recognized in the beginning of the decade. In 2005 a panel of renowned individuals met to address the shortcomings and drawbacks of the current state of visual information processing. The need for a sys...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Simoff, Simeon J. (Επιμελητής έκδοσης), Böhlen, Michael H. (Επιμελητής έκδοσης), Mazeika, Arturas (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Computer Science, 4404
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Visual Data Mining: An Introduction and Overview
  • Visual Data Mining: An Introduction and Overview
  • 1 – Theory and Methodologies
  • The 3DVDM Approach: A Case Study with Clickstream Data
  • Form-Semantics-Function – A Framework for Designing Visual Data Representations for Visual Data Mining
  • A Methodology for Exploring Association Models
  • Visual Exploration of Frequent Itemsets and Association Rules
  • Visual Analytics: Scope and Challenges
  • 2 – Techniques
  • Using Nested Surfaces for Visual Detection of Structures in Databases
  • Visual Mining of Association Rules
  • Interactive Decision Tree Construction for Interval and Taxonomical Data
  • Visual Methods for Examining SVM Classifiers
  • Text Visualization for Visual Text Analytics
  • Visual Discovery of Network Patterns of Interaction between Attributes
  • Mining Patterns for Visual Interpretation in a Multiple-Views Environment
  • Using 2D Hierarchical Heavy Hitters to Investigate Binary Relationships
  • Complementing Visual Data Mining with the Sound Dimension: Sonification of Time Dependent Data
  • Context Visualization for Visual Data Mining
  • Assisting Human Cognition in Visual Data Mining
  • 3 – Tools and Applications
  • Immersive Visual Data Mining: The 3DVDM Approach
  • DataJewel: Integrating Visualization with Temporal Data Mining
  • A Visual Data Mining Environment
  • Integrative Visual Data Mining of Biomedical Data: Investigating Cases in Chronic Fatigue Syndrome and Acute Lymphoblastic Leukaemia
  • Towards Effective Visual Data Mining with Cooperative Approaches.