Genetic Programming 10th European Conference, EuroGP 2007, Valencia, Spain, April 11-13, 2007. Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ebner, Marc (Επιμελητής έκδοσης), O’Neill, Michael (Επιμελητής έκδοσης), Ekárt, Anikó (Επιμελητής έκδοσης), Vanneschi, Leonardo (Επιμελητής έκδοσης), Esparcia-Alcázar, Anna Isabel (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Computer Science, 4445
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04687nam a22006135i 4500
001 978-3-540-71605-1
003 DE-He213
005 20151204161356.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540716051  |9 978-3-540-71605-1 
024 7 |a 10.1007/978-3-540-71605-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.758 
072 7 |a UMZ  |2 bicssc 
072 7 |a UL  |2 bicssc 
072 7 |a COM051230  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
245 1 0 |a Genetic Programming  |h [electronic resource] :  |b 10th European Conference, EuroGP 2007, Valencia, Spain, April 11-13, 2007. Proceedings /  |c edited by Marc Ebner, Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi, Anna Isabel Esparcia-Alcázar. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XI, 382 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 4445 
505 0 |a Plenary Talks -- A Grammatical Genetic Programming Approach to Modularity in Genetic Algorithms -- An Empirical Boosting Scheme for ROC-Based Genetic Programming Classifiers -- Confidence Intervals for Computational Effort Comparisons -- Crossover Bias in Genetic Programming -- Density Estimation with Genetic Programming for Inverse Problem Solving -- Empirical Analysis of GP Tree-Fragments -- Empirical Comparison of Evolutionary Representations of the Inverse Problem for Iterated Function Systems -- Evolution of an Efficient Search Algorithm for the Mate-In-N Problem in Chess -- Fast Genetic Programming on GPUs -- FIFTHTM: A Stack Based GP Language for Vector Processing -- Genetic Programming with Fitness Based on Model Checking -- Geometric Particle Swarm Optimisation -- GP Classifier Problem Decomposition Using First-Price and Second-Price Auctions -- Layered Learning in Boolean GP Problems -- Mining Distributed Evolving Data Streams Using Fractal GP Ensembles -- Multi-objective Genetic Programming for Improving the Performance of TCP -- On Population Size and Neutrality: Facilitating the Evolution of Evolvability -- On the Limiting Distribution of Program Sizes in Tree-Based Genetic Programming -- Predicting Prime Numbers Using Cartesian Genetic Programming -- Real-Time, Non-intrusive Evaluation of VoIP -- Training Binary GP Classifiers Efficiently: A Pareto-coevolutionary Approach -- Posters -- A Comprehensive View of Fitness Landscapes with Neutrality and Fitness Clouds -- Analysing the Regularity of Genomes Using Compression and Expression Simplification -- Changing the Genospace: Solving GA Problems with Cartesian Genetic Programming -- Code Regulation in Open Ended Evolution -- Data Mining of Genetic Programming Run Logs -- Evolving a Statistics Class Using Object Oriented Evolutionary Programming -- Evolving Modular Recursive Sorting Algorithms -- Fitness Landscape Analysis and Image Filter Evolution Using Functional-Level CGP -- Genetic Programming Heuristics for Multiple Machine Scheduling -- Group-Foraging with Particle Swarms and Genetic Programming -- Multiple Interactive Outputs in a Single Tree: An Empirical Investigation -- Parsimony Doesn’t Mean Simplicity: Genetic Programming for Inductive Inference on Noisy Data -- The Holland Broadcast Language and the Modeling of Biochemical Networks -- The Induction of Finite Transducers Using Genetic Programming. 
650 0 |a Computer science. 
650 0 |a Software engineering. 
650 0 |a Computer programming. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Software Engineering/Programming and Operating Systems. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Ebner, Marc.  |e editor. 
700 1 |a O’Neill, Michael.  |e editor. 
700 1 |a Ekárt, Anikó.  |e editor. 
700 1 |a Vanneschi, Leonardo.  |e editor. 
700 1 |a Esparcia-Alcázar, Anna Isabel.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540716020 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 4445 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-71605-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)