|
|
|
|
LEADER |
04687nam a22006135i 4500 |
001 |
978-3-540-71605-1 |
003 |
DE-He213 |
005 |
20151204161356.0 |
007 |
cr nn 008mamaa |
008 |
100301s2007 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540716051
|9 978-3-540-71605-1
|
024 |
7 |
|
|a 10.1007/978-3-540-71605-1
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA76.758
|
072 |
|
7 |
|a UMZ
|2 bicssc
|
072 |
|
7 |
|a UL
|2 bicssc
|
072 |
|
7 |
|a COM051230
|2 bisacsh
|
082 |
0 |
4 |
|a 005.1
|2 23
|
245 |
1 |
0 |
|a Genetic Programming
|h [electronic resource] :
|b 10th European Conference, EuroGP 2007, Valencia, Spain, April 11-13, 2007. Proceedings /
|c edited by Marc Ebner, Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi, Anna Isabel Esparcia-Alcázar.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 2007.
|
300 |
|
|
|a XI, 382 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Computer Science,
|x 0302-9743 ;
|v 4445
|
505 |
0 |
|
|a Plenary Talks -- A Grammatical Genetic Programming Approach to Modularity in Genetic Algorithms -- An Empirical Boosting Scheme for ROC-Based Genetic Programming Classifiers -- Confidence Intervals for Computational Effort Comparisons -- Crossover Bias in Genetic Programming -- Density Estimation with Genetic Programming for Inverse Problem Solving -- Empirical Analysis of GP Tree-Fragments -- Empirical Comparison of Evolutionary Representations of the Inverse Problem for Iterated Function Systems -- Evolution of an Efficient Search Algorithm for the Mate-In-N Problem in Chess -- Fast Genetic Programming on GPUs -- FIFTHTM: A Stack Based GP Language for Vector Processing -- Genetic Programming with Fitness Based on Model Checking -- Geometric Particle Swarm Optimisation -- GP Classifier Problem Decomposition Using First-Price and Second-Price Auctions -- Layered Learning in Boolean GP Problems -- Mining Distributed Evolving Data Streams Using Fractal GP Ensembles -- Multi-objective Genetic Programming for Improving the Performance of TCP -- On Population Size and Neutrality: Facilitating the Evolution of Evolvability -- On the Limiting Distribution of Program Sizes in Tree-Based Genetic Programming -- Predicting Prime Numbers Using Cartesian Genetic Programming -- Real-Time, Non-intrusive Evaluation of VoIP -- Training Binary GP Classifiers Efficiently: A Pareto-coevolutionary Approach -- Posters -- A Comprehensive View of Fitness Landscapes with Neutrality and Fitness Clouds -- Analysing the Regularity of Genomes Using Compression and Expression Simplification -- Changing the Genospace: Solving GA Problems with Cartesian Genetic Programming -- Code Regulation in Open Ended Evolution -- Data Mining of Genetic Programming Run Logs -- Evolving a Statistics Class Using Object Oriented Evolutionary Programming -- Evolving Modular Recursive Sorting Algorithms -- Fitness Landscape Analysis and Image Filter Evolution Using Functional-Level CGP -- Genetic Programming Heuristics for Multiple Machine Scheduling -- Group-Foraging with Particle Swarms and Genetic Programming -- Multiple Interactive Outputs in a Single Tree: An Empirical Investigation -- Parsimony Doesn’t Mean Simplicity: Genetic Programming for Inductive Inference on Noisy Data -- The Holland Broadcast Language and the Modeling of Biochemical Networks -- The Induction of Finite Transducers Using Genetic Programming.
|
650 |
|
0 |
|a Computer science.
|
650 |
|
0 |
|a Software engineering.
|
650 |
|
0 |
|a Computer programming.
|
650 |
|
0 |
|a Computers.
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Pattern recognition.
|
650 |
1 |
4 |
|a Computer Science.
|
650 |
2 |
4 |
|a Software Engineering/Programming and Operating Systems.
|
650 |
2 |
4 |
|a Programming Techniques.
|
650 |
2 |
4 |
|a Computation by Abstract Devices.
|
650 |
2 |
4 |
|a Algorithm Analysis and Problem Complexity.
|
650 |
2 |
4 |
|a Pattern Recognition.
|
650 |
2 |
4 |
|a Artificial Intelligence (incl. Robotics).
|
700 |
1 |
|
|a Ebner, Marc.
|e editor.
|
700 |
1 |
|
|a O’Neill, Michael.
|e editor.
|
700 |
1 |
|
|a Ekárt, Anikó.
|e editor.
|
700 |
1 |
|
|a Vanneschi, Leonardo.
|e editor.
|
700 |
1 |
|
|a Esparcia-Alcázar, Anna Isabel.
|e editor.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540716020
|
830 |
|
0 |
|a Lecture Notes in Computer Science,
|x 0302-9743 ;
|v 4445
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-540-71605-1
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (Springer-11645)
|