Media Theory Interdisciplinary Applied Mathematics /

The focus of this book is a mathematical structure modeling a physical or biological system that can be in any of a number of `states.' Each state is characterized by a set of binary features, and differs from some other neighbor state or states by just one of those feature. A simple example of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Eppstein, David (Συγγραφέας), Falmagne, Jean-Claude (Συγγραφέας), Ovchinnikov, Sergei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Έκδοση:First edition.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02740nam a22005295i 4500
001 978-3-540-71697-6
003 DE-He213
005 20151204191609.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540716976  |9 978-3-540-71697-6 
024 7 |a 10.1007/978-3-540-71697-6  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Eppstein, David.  |e author. 
245 1 0 |a Media Theory  |h [electronic resource] :  |b Interdisciplinary Applied Mathematics /  |c by David Eppstein, Jean-Claude Falmagne, Sergei Ovchinnikov. 
250 |a First edition. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a X, 328 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Examples and Preliminaries -- Basic Concepts -- Media and Well-graded Families -- Closed Media and ?-Closed Families -- Well-Graded Families of Relations -- Mediatic Graphs -- Media and Partial Cubes -- Media and Integer Lattices -- Hyperplane arrangements and their media -- Algorithms -- Visualization of Media -- Random Walks on Media -- Applications. 
520 |a The focus of this book is a mathematical structure modeling a physical or biological system that can be in any of a number of `states.' Each state is characterized by a set of binary features, and differs from some other neighbor state or states by just one of those feature. A simple example of a `state’ is a partial solution of a jigsaw puzzle, which can be transformed into another partial solution or into the final solution just by adding or removing a single adjoining piece. The evolution of such a system over time is considered. Such a structure is analyzed from algebraic and probabilistic (stochastic) standpoints. 
650 0 |a Mathematics. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Combinatorics. 
700 1 |a Falmagne, Jean-Claude.  |e author. 
700 1 |a Ovchinnikov, Sergei.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540716969 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-71697-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)