Punctured Torus Groups and 2-Bridge Knot Groups (I)

This monograph is Part 1 of a book project intended to give a full account of Jorgensen's theory of punctured torus Kleinian groups and its generalization, with application to knot theory. Although Jorgensen's original work was not published in complete form, it has been a source of inspir...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Akiyoshi, Hirotaka (Συγγραφέας), Sakuma, Makoto (Συγγραφέας), Wada, Masaaki (Συγγραφέας), Yamashita, Yasushi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Mathematics, 1909
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03043nam a22005655i 4500
001 978-3-540-71807-9
003 DE-He213
005 20151123160204.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540718079  |9 978-3-540-71807-9 
024 7 |a 10.1007/978-3-540-71807-9  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a PBPH  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.34  |2 23 
100 1 |a Akiyoshi, Hirotaka.  |e author. 
245 1 0 |a Punctured Torus Groups and 2-Bridge Knot Groups (I)  |h [electronic resource] /  |c by Hirotaka Akiyoshi, Makoto Sakuma, Masaaki Wada, Yasushi Yamashita. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XLIII, 256 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1909 
505 0 |a Jorgensen's picture of quasifuchsian punctured torus groups -- Fricke surfaces and PSL(2, ?)-representations -- Labeled representations and associated complexes -- Chain rule and side parameter -- Special examples -- Reformulation of Main Theorem 1.3.5 and outline of the proof -- Openness -- Closedness -- Algebraic roots and geometric roots. 
520 |a This monograph is Part 1 of a book project intended to give a full account of Jorgensen's theory of punctured torus Kleinian groups and its generalization, with application to knot theory. Although Jorgensen's original work was not published in complete form, it has been a source of inspiration. In particular, it has motivated and guided Thurston's revolutionary study of low-dimensional geometric topology. In this monograph, we give an elementary and self-contained description of Jorgensen's theory with a complete proof. Through various informative illustrations, readers are naturally led to an intuitive, synthetic grasp of the theory, which clarifies how a very simple fuchsian group evolves into complicated Kleinian groups. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Functions of complex variables. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Group Theory and Generalizations. 
700 1 |a Sakuma, Makoto.  |e author. 
700 1 |a Wada, Masaaki.  |e author. 
700 1 |a Yamashita, Yasushi.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540718062 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1909 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-71807-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)