Stratified Lie Groups and Potential Theory for their Sub-Laplacians

The existence, for every sub-Laplacian, of a homogeneous fundamental solution smooth out of the origin, plays a crucial role in the book. This makes it possible to develop an exhaustive Potential Theory, almost completely parallel to that of the classical Laplace operator. This book provides an exte...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bonfiglioli, A. (Συγγραφέας), Lanconelli, E. (Συγγραφέας), Uguzzoni, F. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03774nam a22005415i 4500
001 978-3-540-71897-0
003 DE-He213
005 20151204163257.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540718970  |9 978-3-540-71897-0 
024 7 |a 10.1007/978-3-540-71897-0  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Bonfiglioli, A.  |e author. 
245 1 0 |a Stratified Lie Groups and Potential Theory for their Sub-Laplacians  |h [electronic resource] /  |c by A. Bonfiglioli, E. Lanconelli, F. Uguzzoni. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XXVI, 802 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Elements of Analysis of Stratified Groups -- Stratified Groups and Sub-Laplacians -- Abstract Lie Groups and Carnot Groups -- Carnot Groups of Step Two -- Examples of Carnot Groups -- The Fundamental Solution for a Sub-Laplacian and Applications -- Elements of Potential Theory for Sub-Laplacians -- Abstract Harmonic Spaces -- The ?-harmonic Space -- ?-subharmonic Functions -- Representation Theorems -- Maximum Principle on Unbounded Domains -- ?-capacity, ?-polar Sets and Applications -- ?-thinness and ?-fine Topology -- d-Hausdorff Measure and ?-capacity -- Further Topics on Carnot Groups -- Some Remarks on Free Lie Algebras -- More on the Campbell–Hausdorff Formula -- Families of Diffeomorphic Sub-Laplacians -- Lifting of Carnot Groups -- Groups of Heisenberg Type -- The Carathéodory–Chow–Rashevsky Theorem -- Taylor Formula on Homogeneous Carnot Groups. 
520 |a The existence, for every sub-Laplacian, of a homogeneous fundamental solution smooth out of the origin, plays a crucial role in the book. This makes it possible to develop an exhaustive Potential Theory, almost completely parallel to that of the classical Laplace operator. This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. In recent years, sub-Laplacian operators have received considerable attention due to their special role in the theory of linear second-order PDE's with semidefinite characteristic form. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra nor in differential geometry. It is thus addressed, besides PhD students, to junior and senior researchers in different areas such as: partial differential equations; geometric control theory; geometric measure theory and minimal surfaces in stratified Lie groups. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Partial differential equations. 
650 0 |a Potential theory (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Potential Theory. 
650 2 4 |a Topological Groups, Lie Groups. 
700 1 |a Lanconelli, E.  |e author. 
700 1 |a Uguzzoni, F.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540718963 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-71897-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)