Forecasting with Exponential Smoothing The State Space Approach /

Exponential smoothing methods have been around since the 1950s, and are the most popular forecasting methods used in business and industry. Recently, exponential smoothing has been revolutionized with the introduction of a complete modeling framework incorporating innovations state space models, lik...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hyndman, Rob (Συγγραφέας), Koehler, Anne (Συγγραφέας), Ord, Keith (Συγγραφέας), Snyder, Ralph (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04653nam a22005535i 4500
001 978-3-540-71918-2
003 DE-He213
005 20151204190459.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540719182  |9 978-3-540-71918-2 
024 7 |a 10.1007/978-3-540-71918-2  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Hyndman, Rob.  |e author. 
245 1 0 |a Forecasting with Exponential Smoothing  |h [electronic resource] :  |b The State Space Approach /  |c by Rob Hyndman, Anne Koehler, Keith Ord, Ralph Snyder. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIII, 362 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Basic Concepts -- Getting Started -- Essentials -- Linear Innovations State Space Models -- Nonlinear and Heteroscedastic Innovations State Space Models -- Estimation of Innovations State Space Models -- Prediction Distributions and Intervals -- Selection of Models -- Further Topics -- Normalizing Seasonal Components -- Models with Regressor Variables -- Some Properties of Linear Models -- Reduced Forms and Relationships with ARIMA Models -- Linear Innovations State Space Models with Random Seed States -- Conventional State Space Models -- Time Series with Multiple Seasonal Patterns -- Nonlinear Models for Positive Data -- Models for Count Data -- Vector Exponential Smoothing -- Applications -- Inventory Control Applications -- Conditional Heteroscedasticity and Applications in Finance -- Economic Applications: The Beveridge–Nelson Decomposition. 
520 |a Exponential smoothing methods have been around since the 1950s, and are the most popular forecasting methods used in business and industry. Recently, exponential smoothing has been revolutionized with the introduction of a complete modeling framework incorporating innovations state space models, likelihood calculation, prediction intervals and procedures for model selection. In this book, all of the important results for this framework are brought together in a coherent manner with consistent notation. In addition, many new results and extensions are introduced and several application areas are examined in detail. Rob J. Hyndman is a Professor of Statistics and Director of the Business and Economic Forecasting Unit at Monash University, Australia. He is Editor-in-Chief of the International Journal of Forecasting, author of over 100 research papers in statistical science, and received the 2007 Moran medal from the Australian Academy of Science for his contributions to statistical research. Anne B. Koehler is a Professor of Decision Sciences and the Panuska Professor of Business Administration at Miami University, Ohio. She has numerous publications, many of which are on forecasting models for seasonal time series and exponential smoothing methods. J.Keith Ord is a Professor in the McDonough School of Business, Georgetown University, Washington DC. He has authored over 100 research papers in statistics and its applications and ten books including Kendall's Advanced Theory of Statistics. Ralph D. Snyder is an Associate Professor in the Department of Econometrics and Business Statistics at Monash University, Australia. He has extensive publications on business forecasting and inventory management. He has played a leading role in the establishment of the class of innovations state space models for exponential smoothing. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 0 |a Economic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Koehler, Anne.  |e author. 
700 1 |a Ord, Keith.  |e author. 
700 1 |a Snyder, Ralph.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540719168 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-71918-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)