Hyperbolic Systems of Balance Laws Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 14–21, 2003 /

The present Cime volume includes four lectures by Bressan, Serre, Zumbrun and Williams and an appendix with a Tutorial on Center Manifold Theorem by Bressan. Bressan’s notes start with an extensive review of the theory of hyperbolic conservation laws. Then he introduces the vanishing viscosity appro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bressan, Alberto (Συγγραφέας), Serre, Denis (Συγγραφέας), Williams, Mark (Συγγραφέας), Zumbrun, Kevin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Marcati, Pierangelo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Mathematics, 1911
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03387nam a22005415i 4500
001 978-3-540-72187-1
003 DE-He213
005 20151204171424.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540721871  |9 978-3-540-72187-1 
024 7 |a 10.1007/978-3-540-72187-1  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Bressan, Alberto.  |e author. 
245 1 0 |a Hyperbolic Systems of Balance Laws  |h [electronic resource] :  |b Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 14–21, 2003 /  |c by Alberto Bressan, Denis Serre, Mark Williams, Kevin Zumbrun ; edited by Pierangelo Marcati. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XII, 356 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1911 
505 0 |a BV Solutions to Hyperbolic Systems by Vanishing Viscosity -- Discrete Shock Profiles: Existence and Stability -- Stability of Multidimensional Viscous Shocks -- Planar Stability Criteria for Viscous Shock Waves of Systems with Real Viscosity. 
520 |a The present Cime volume includes four lectures by Bressan, Serre, Zumbrun and Williams and an appendix with a Tutorial on Center Manifold Theorem by Bressan. Bressan’s notes start with an extensive review of the theory of hyperbolic conservation laws. Then he introduces the vanishing viscosity approach and explains clearly the building blocks of the theory in particular the crucial role of the decomposition by travelling waves. Serre focuses on existence and stability for discrete shock profiles, he reviews the existence both in the rational and in the irrational cases and gives a concise introduction to the use of spectral methods for stability analysis. Finally the lectures by Williams and Zumbrun deal with the stability of multidimensional fronts. Williams’ lecture describes the stability of multidimensional viscous shocks: the small viscosity limit, linearization and conjugation, Evans functions, Lopatinski determinants etc. Zumbrun discusses planar stability for viscous shocks with a realistic physical viscosity, necessary and sufficient conditions for nonlinear stability, in analogy to the Lopatinski condition obtained by Majda for the inviscid case. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
650 0 |a Continuum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Classical Continuum Physics. 
650 2 4 |a Numerical Analysis. 
700 1 |a Serre, Denis.  |e author. 
700 1 |a Williams, Mark.  |e author. 
700 1 |a Zumbrun, Kevin.  |e author. 
700 1 |a Marcati, Pierangelo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540721864 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1911 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-72187-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)