Material Inhomogeneities and their Evolution A Geometric Approach /

Inhomogeneity theory is of importance for the description of a variety of material phenomena, including continuous distributions of dislocations, fracture mechanics, plasticity, biological remodelling and growth and, more generally, all processes that entail changes in the material body driven by fo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Epstein, Marcelo (Συγγραφέας), Elżanowski, Marek (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Interaction Mechanics, Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03761nam a22005415i 4500
001 978-3-540-72373-8
003 DE-He213
005 20151204143224.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540723738  |9 978-3-540-72373-8 
024 7 |a 10.1007/978-3-540-72373-8  |2 doi 
040 |d GrThAP 
050 4 |a TA405-409.3 
050 4 |a QA808.2 
072 7 |a TG  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Epstein, Marcelo.  |e author. 
245 1 0 |a Material Inhomogeneities and their Evolution  |h [electronic resource] :  |b A Geometric Approach /  |c by Marcelo Epstein, Marek Elżanowski. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XIII, 261 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interaction Mechanics, Mathematics,  |x 1860-6245 
505 0 |a Inhomogeneity in Continuum Mechanics -- An overview of inhomogeneity theory -- Uniformity of second-grade materials -- Uniformity of Cosserat media -- Functionally graded bodies -- Material Evolution -- On energy, Cauchy stress and Eshelby stress -- An overview of the theory of material evolution -- Second-grade evolution -- Mathematical Foundations -- Basic geometric concepts -- Theory of connections -- Bundles of linear frames -- Connections of higher order. 
520 |a Inhomogeneity theory is of importance for the description of a variety of material phenomena, including continuous distributions of dislocations, fracture mechanics, plasticity, biological remodelling and growth and, more generally, all processes that entail changes in the material body driven by forces known in literature as material or configurational. This monograph presents a unified treatment of the theory using some of the tools of modern differential geometry. The first part of the book deals with the geometrical description of uniform bodies and their homogeneity (i.e., integrability) conditions. In the second part, a theory of material evolution is developed and its relevance in various applied contexts discussed. The necessary geometrical notions are introduced as needed in the first two parts but often without due attention to an uncompromising mathematical rigour. This task is left for the third part of the book, which is a highly technical compendium of those concepts of modern differential geometry that are invoked in the first two parts (differentiable manifolds, Lie groups, jets, principal fibre bundles, G-structures, connections, frame bundles, integrable prolongations, groupoids, etc.). To make the text as useful as possible to active researchers and graduate students, considerable attention has been devoted to non-standard topics, such as second-grade materials, Cosserat media and functionally graded bodies. 
650 0 |a Engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mechanics. 
650 0 |a Continuum mechanics. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mechanics. 
700 1 |a Elżanowski, Marek.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540723721 
830 0 |a Interaction Mechanics, Mathematics,  |x 1860-6245 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-72373-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)