Functional Fractional Calculus for System Identification and Controls

When a new extraordinary and outstanding theory is stated, it has to face criticism and skepticism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its applications to real life problems. It is e...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Das, Shantanu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03893nam a22005655i 4500
001 978-3-540-72703-3
003 DE-He213
005 20151204172628.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540727033  |9 978-3-540-72703-3 
024 7 |a 10.1007/978-3-540-72703-3  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Das, Shantanu.  |e author. 
245 1 0 |a Functional Fractional Calculus for System Identification and Controls  |h [electronic resource] /  |c by Shantanu Das. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XVIII, 240 p. 68 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a to Fractional Calculus -- Functions Used in Fractional Calculus -- Observation of Fractional Calculus in Physical System Description -- Concept of Fractional Divergence and Fractional Curl -- Fractional Differintegrations: Insight Concepts -- Initialized Differintegrals and Generalized Calculus -- Generalized Laplace Transform for Fractional Differintegrals -- Application of Generalized Fractional Calculus in Electrical Circuit Analysis -- Application of Generalized Fractional Calculus in Other Science and Engineering Fields -- System Order Identification and Control. 
520 |a When a new extraordinary and outstanding theory is stated, it has to face criticism and skepticism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its applications to real life problems. It is extraordinary because it does not deal with ‘ordinary’ differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, but also several practical applications are given particularly for system identification, description and then efficient controls. Historically, Sir Issac Newton and Gottfried Wihelm Leibniz independently discovered calculus in the middle of the 17th century. In recognition to this remarkable discovery, J. Von. Neumann remarked, "…the calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more equivocally than anything else the inception of modern mathematical analysis which is logical development, still constitute the greatest technical advance in exact thinking." The XXI century will thus have ‘exact thinking’ for advancement in technology by growing application of fractional calculus, and this century will speak the language which nature understand the best. 
650 0 |a Engineering. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a System theory. 
650 0 |a Physics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Analysis. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Systems Theory, Control. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540727026 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-72703-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)