Progress in Botany

With regard to global climate changes, one of our future challenges will be to develop crop plants that cope better with changing environmental conditions. Abiotic stress is estimated to be the primary cause of crop loss worldwide, with the potential to cause a reduction of more than 50% in the aver...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lüttge, Ulrich (Επιμελητής έκδοσης), Beyschlag, Wolfram (Επιμελητής έκδοσης), Murata, Jin (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Progress in Botany, 69
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04681nam a22005535i 4500
001 978-3-540-72954-9
003 DE-He213
005 20151204153016.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540729549  |9 978-3-540-72954-9 
024 7 |a 10.1007/978-3-540-72954-9  |2 doi 
040 |d GrThAP 
050 4 |a QK1-989 
072 7 |a PST  |2 bicssc 
072 7 |a SCI011000  |2 bisacsh 
072 7 |a NAT026000  |2 bisacsh 
082 0 4 |a 580  |2 23 
245 1 0 |a Progress in Botany  |h [electronic resource] /  |c edited by Ulrich Lüttge, Wolfram Beyschlag, Jin Murata. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XII, 479 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Botany,  |x 0340-4773 ;  |v 69 
505 0 |a Review -- Ecophysiology: Migrations Between Different Levels of Scaling -- Genetics -- Variability of Recombination Rates in Higher Plants -- Functional Markers in Resistance Breeding -- Extranuclear Inheritance: Plastid—Nuclear Cooperation in Photosystem I Assembly in Photosynthetic Eukaryotes -- Molecular Cell Biology: Are Reactive Oxygen Species Regulators of Leaf Senescence? -- Physiology -- Application of Laser-Assisted Microdissection for Tissue and Cell-Specific Analysis of RNA, Proteins, and Metabolites -- Plasma Membrane Redox Systems: Lipid Rafts and Protein Assemblies -- Subcellular Sites of Environmental Sensing -- Oxidative Stress and Salt Tolerance in Plants -- Crassulacean Acid Metabolism: a Cause or Consequence of Oxidative Stress in Planta? -- Cuscuta spp: “Parasitic Plants in the Spotlight of Plant Physiology, Economy and Ecology” -- Ecology -- Bayesian Data—Model Integration in Plant Physiological and Ecosystem Ecology -- Quaternary Palaeoecology: Africa and its Surroundings -- The Application of Novel Optical Sensors (Optodes) in Experimental Plant Ecology -- Indirect Defence — Recent Developments and Open Questions -- Functional Differences in Soil Water Pools: a New Perspective on Plant Water Use in Water-Limited Ecosystems -- Plant Herbivore Interactions at the Forest Edge -- Getting Plant—Soil Feedbacks out of the Greenhouse: Experimental and Conceptual Approaches. 
520 |a With regard to global climate changes, one of our future challenges will be to develop crop plants that cope better with changing environmental conditions. Abiotic stress is estimated to be the primary cause of crop loss worldwide, with the potential to cause a reduction of more than 50% in the average yield of the main crops. Climatic extremes are known to trigger senescence processes. Many different agriculturally important traits are affected by senescence, like number and quality of seeds, timing of seed set, fruit ripening, etc. . Despite the importance of the sen- cence processes, our knowledge on the regulatory mechanisms of senescence is still poor. However, senescence is not a chaotic breakdown, but an orderly loss of normal cell functions. In contrast to aging processes which have a passive and non-regulated degenerative character (for a review, see Krupinska et al. 2003), senescence is an active and highly regulated process. Senescence can be initiated by exogenous and endogenous triggers. The most important endogenous factors inducing senescence are the age of the leaves and the age and developmental stage of the plant. The leaves of annual plants show a continuous decrease in their photosynthesis rate after full expansion (Batt and Woolhause 1975; Hensel et al. 1993). In fast-aging plants like Arabidopsis, photosynthetic capacity of the leaves decreases by 50% within 4–6 days of full leaf expansion under continuous light conditions (Hensel et al. 1993). 
650 0 |a Life sciences. 
650 0 |a Plant ecology. 
650 0 |a Plant science. 
650 0 |a Botany. 
650 0 |a Plant genetics. 
650 0 |a Plant physiology. 
650 1 4 |a Life Sciences. 
650 2 4 |a Plant Sciences. 
650 2 4 |a Plant Physiology. 
650 2 4 |a Plant Genetics & Genomics. 
650 2 4 |a Plant Ecology. 
700 1 |a Lüttge, Ulrich.  |e editor. 
700 1 |a Beyschlag, Wolfram.  |e editor. 
700 1 |a Murata, Jin.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540729532 
830 0 |a Progress in Botany,  |x 0340-4773 ;  |v 69 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-72954-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)