Metalearning Applications to Data Mining /

Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Brazdil, Pavel (Συγγραφέας), Giraud-Carrier, Christophe (Συγγραφέας), Soares, Carlos (Συγγραφέας), Vilalta, Ricardo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Cognitive Technologies,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03360nam a22005415i 4500
001 978-3-540-73263-1
003 DE-He213
005 20151029231304.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540732631  |9 978-3-540-73263-1 
024 7 |a 10.1007/978-3-540-73263-1  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Brazdil, Pavel.  |e author. 
245 1 0 |a Metalearning  |h [electronic resource] :  |b Applications to Data Mining /  |c by Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, Ricardo Vilalta. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XI, 176 p. 53 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Technologies,  |x 1611-2482 
505 0 |a Metalearning: Concepts and Systems -- Metalearning for Algorithm Recommendation: an Introduction -- Development of Metalearning Systems for Algorithm Recommendation -- Extending Metalearning to Data Mining and KDD -- Extending Metalearning to Data Mining and KDD -- Bias Management in Time-Changing Data Streams -- Transfer of Metaknowledge Across Tasks -- Composition of Complex Systems: Role of Domain-Specific Metaknowledge. 
520 |a Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Pattern Recognition. 
700 1 |a Giraud-Carrier, Christophe.  |e author. 
700 1 |a Soares, Carlos.  |e author. 
700 1 |a Vilalta, Ricardo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540732624 
830 0 |a Cognitive Technologies,  |x 1611-2482 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-73263-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)