Laplacian Eigenvectors of Graphs Perron-Frobenius and Faber-Krahn Type Theorems /

Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schröding...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Biyikoğu, Türker (Συγγραφέας), Leydold, Josef (Συγγραφέας), Stadler, Peter F. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Mathematics, 1915
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02943nam a22005175i 4500
001 978-3-540-73510-6
003 DE-He213
005 20151204191455.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540735106  |9 978-3-540-73510-6 
024 7 |a 10.1007/978-3-540-73510-6  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Biyikoğu, Türker.  |e author. 
245 1 0 |a Laplacian Eigenvectors of Graphs  |h [electronic resource] :  |b Perron-Frobenius and Faber-Krahn Type Theorems /  |c by Türker Biyikoğu, Josef Leydold, Peter F. Stadler. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a VIII, 120 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1915 
505 0 |a Graph Laplacians -- Eigenfunctions and Nodal Domains -- Nodal Domain Theorems for Special Graph Classes -- Computational Experiments -- Faber-Krahn Type Inequalities. 
520 |a Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) "Geometric" properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. The observation that the cost functions of quite a few of the well-studied combinatorial optimization problems are eigenvectors of associated graph Laplacians has prompted the investigation of such eigenvectors. The volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domains"), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Matrix theory. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Combinatorics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
700 1 |a Leydold, Josef.  |e author. 
700 1 |a Stadler, Peter F.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540735090 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1915 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-73510-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)