Process Neural Networks Theory and Applications /

"Process Neural Network: Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks and enhances the expression capability for practical...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: He, Xingui (Συγγραφέας), Xu, Shaohua (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Advanced Topics in Science and Technology in China,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03147nam a22004935i 4500
001 978-3-540-73762-9
003 DE-He213
005 20151204144553.0
007 cr nn 008mamaa
008 100702s2010 gw | s |||| 0|eng d
020 |a 9783540737629  |9 978-3-540-73762-9 
024 7 |a 10.1007/978-3-540-73762-9  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a He, Xingui.  |e author. 
245 1 0 |a Process Neural Networks  |h [electronic resource] :  |b Theory and Applications /  |c by Xingui He, Shaohua Xu. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a 240 p. 78 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Topics in Science and Technology in China,  |x 1995-6819 
505 0 |a Artificial Neural Networks -- Process Neurons -- Feedforward Process Neural Networks -- Learning Algorithms for Process Neural Networks -- Feedback Process Neural Networks -- Multi-aggregation Process Neural Networks -- Design and Construction of Process Neural Networks -- Application of Process Neural Networks. 
520 |a "Process Neural Network: Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks and enhances the expression capability for practical problems, with broad applicability to solving problems relating to processes in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are closely examined. The application methods, network construction principles, and optimization algorithms of process neural networks in practical fields, such as nonlinear time-varying system modeling, process signal pattern recognition, dynamic system identification, and process forecast, are discussed in detail. The information processing flow and the mapping relationship between inputs and outputs of process neural networks are richly illustrated. Xingui He is a member of Chinese Academy of Engineering and also a professor at the School of Electronic Engineering and Computer Science, Peking University, China, where Shaohua Xu also serves as a professor. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
700 1 |a Xu, Shaohua.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540737612 
830 0 |a Advanced Topics in Science and Technology in China,  |x 1995-6819 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-73762-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)