Parameter Estimation in Stochastic Differential Equations

Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields l...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bishwal, Jaya P. N. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Mathematics, 1923
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03632nam a22005775i 4500
001 978-3-540-74448-1
003 DE-He213
005 20151204160226.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540744481  |9 978-3-540-74448-1 
024 7 |a 10.1007/978-3-540-74448-1  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Bishwal, Jaya P. N.  |e author. 
245 1 0 |a Parameter Estimation in Stochastic Differential Equations  |h [electronic resource] /  |c by Jaya P. N. Bishwal. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIV, 268 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1923 
505 0 |a Continuous Sampling -- Parametric Stochastic Differential Equations -- Rates of Weak Convergence of Estimators in Homogeneous Diffusions -- Large Deviations of Estimators in Homogeneous Diffusions -- Local Asymptotic Mixed Normality for Nonhomogeneous Diffusions -- Bayes and Sequential Estimation in Stochastic PDEs -- Maximum Likelihood Estimation in Fractional Diffusions -- Discrete Sampling -- Approximate Maximum Likelihood Estimation in Nonhomogeneous Diffusions -- Rates of Weak Convergence of Estimators in the Ornstein-Uhlenbeck Process -- Local Asymptotic Normality for Discretely Observed Homogeneous Diffusions -- Estimating Function for Discretely Observed Homogeneous Diffusions. 
520 |a Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Game theory. 
650 0 |a Economics, Mathematical. 
650 0 |a Numerical analysis. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540744474 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1923 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-74448-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)