Weighted Littlewood-Paley Theory and Exponential-Square Integrability

Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain osci...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wilson, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Mathematics, 1924
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02668nam a22004695i 4500
001 978-3-540-74587-7
003 DE-He213
005 20151123161230.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540745877  |9 978-3-540-74587-7 
024 7 |a 10.1007/978-3-540-74587-7  |2 doi 
040 |d GrThAP 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 |a Wilson, Michael.  |e author. 
245 1 0 |a Weighted Littlewood-Paley Theory and Exponential-Square Integrability  |h [electronic resource] /  |c by Michael Wilson. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIII, 227 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1924 
505 0 |a Some Assumptions -- An Elementary Introduction -- Exponential Square -- Many Dimensions; Smoothing -- The Calderón Reproducing Formula I -- The Calderón Reproducing Formula II -- The Calderón Reproducing Formula III -- Schrödinger Operators -- Some Singular Integrals -- Orlicz Spaces -- Goodbye to Good-? -- A Fourier Multiplier Theorem -- Vector-Valued Inequalities -- Random Pointwise Errors. 
520 |a Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain oscillatory infinite series of functions in terms of infinite series of non-negative functions. Beginning in the 1980s, it was discovered that this control could be made much sharper than was previously suspected. The present book tries to give a gentle, well-motivated introduction to those discoveries, the methods behind them, their consequences, and some of their applications. 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540745822 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1924 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-74587-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)