Weighted Littlewood-Paley Theory and Exponential-Square Integrability
Littlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn’t really make sense. It does so by letting us control certain osci...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2008.
|
Σειρά: | Lecture Notes in Mathematics,
1924 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Some Assumptions
- An Elementary Introduction
- Exponential Square
- Many Dimensions; Smoothing
- The Calderón Reproducing Formula I
- The Calderón Reproducing Formula II
- The Calderón Reproducing Formula III
- Schrödinger Operators
- Some Singular Integrals
- Orlicz Spaces
- Goodbye to Good-?
- A Fourier Multiplier Theorem
- Vector-Valued Inequalities
- Random Pointwise Errors.