|
|
|
|
LEADER |
03342nam a22004935i 4500 |
001 |
978-3-540-74775-8 |
003 |
DE-He213 |
005 |
20151123194627.0 |
007 |
cr nn 008mamaa |
008 |
100301s2008 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540747758
|9 978-3-540-74775-8
|
024 |
7 |
|
|a 10.1007/978-3-540-74775-8
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA372
|
072 |
|
7 |
|a PBKJ
|2 bicssc
|
072 |
|
7 |
|a MAT007000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.352
|2 23
|
100 |
1 |
|
|a Barreira, Luis.
|e author.
|
245 |
1 |
0 |
|a Stability of Nonautonomous Differential Equations
|h [electronic resource] /
|c by Luis Barreira, Claudia Valls.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 2008.
|
300 |
|
|
|a XIV, 291 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1926
|
505 |
0 |
|
|a Exponential dichotomies -- Exponential dichotomies and basic properties -- Robustness of nonuniform exponential dichotomies -- Stable manifolds and topological conjugacies -- Lipschitz stable manifolds -- Smooth stable manifolds in Rn -- Smooth stable manifolds in Banach spaces -- A nonautonomous Grobman–Hartman theorem -- Center manifolds, symmetry and reversibility -- Center manifolds in Banach spaces -- Reversibility and equivariance in center manifolds -- Lyapunov regularity and stability theory -- Lyapunov regularity and exponential dichotomies -- Lyapunov regularity in Hilbert spaces -- Stability of nonautonomous equations in Hilbert spaces.
|
520 |
|
|
|a Main theme of this volume is the stability of nonautonomous differential equations, with emphasis on the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, the construction and regularity of topological conjugacies, the study of center manifolds, as well as their reversibility and equivariance properties. Most results are obtained in the infinite-dimensional setting of Banach spaces. Furthermore, the linear variational equations are always assumed to possess a nonuniform exponential behavior, given either by the existence of a nonuniform exponential contraction or a nonuniform exponential dichotomy. The presentation is self-contained and has unified character. The volume contributes towards a rigorous mathematical foundation of the theory in the infinite-dimension setting, and may lead to further developments in the field. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Dynamics.
|
650 |
|
0 |
|a Ergodic theory.
|
650 |
|
0 |
|a Differential equations.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Ordinary Differential Equations.
|
650 |
2 |
4 |
|a Dynamical Systems and Ergodic Theory.
|
700 |
1 |
|
|a Valls, Claudia.
|e author.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540747741
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 1926
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-540-74775-8
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|