Zeta Functions of Groups and Rings

Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Sautoy, Marcus du (Συγγραφέας), Woodward, Luke (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Mathematics, 1925
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02403nam a22005175i 4500
001 978-3-540-74776-5
003 DE-He213
005 20151123150504.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540747765  |9 978-3-540-74776-5 
024 7 |a 10.1007/978-3-540-74776-5  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Sautoy, Marcus du.  |e author. 
245 1 0 |a Zeta Functions of Groups and Rings  |h [electronic resource] /  |c by Marcus du Sautoy, Luke Woodward. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XII, 212 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1925 
505 0 |a Nilpotent Groups: Explicit Examples -- Soluble Lie Rings -- Local Functional Equations -- Natural Boundaries I: Theory -- Natural Boundaries II: Algebraic Groups -- Natural Boundaries III: Nilpotent Groups. 
520 |a Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Number Theory. 
650 2 4 |a Non-associative Rings and Algebras. 
700 1 |a Woodward, Luke.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540747017 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1925 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-74776-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)