High Order Difference Methods for Time Dependent PDE

Many books have been written on ?nite difference methods (FDM), but there are good reasons to write still another one. The main reason is that even if higher order methods have been known for a long time, the analysis of stability, accuracy and effectiveness is missing to a large extent. For example...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gustafsson, Bertil (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Springer Series in Computational Mathematics, 38
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03382nam a22004575i 4500
001 978-3-540-74993-6
003 DE-He213
005 20151125021951.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540749936  |9 978-3-540-74993-6 
024 7 |a 10.1007/978-3-540-74993-6  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Gustafsson, Bertil.  |e author. 
245 1 0 |a High Order Difference Methods for Time Dependent PDE  |h [electronic resource] /  |c by Bertil Gustafsson. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XVI, 334 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 38 
505 0 |a When are High Order Methods Effective? -- Well-posedness and Stability -- Order of Accuracy and the Convergence Rate -- Approximation in Space -- Approximation in Time -- Coupled Space-Time Approximations -- Boundary Treatment -- The Box Scheme -- Wave Propagation -- A Problem in Fluid Dynamics -- Nonlinear Problems with Shocks -- to Other Numerical Methods. 
520 |a Many books have been written on ?nite difference methods (FDM), but there are good reasons to write still another one. The main reason is that even if higher order methods have been known for a long time, the analysis of stability, accuracy and effectiveness is missing to a large extent. For example, the de?nition of the formal high order accuracy is based on the assumption that the true solution is smooth, or expressed differently, that the grid is ?ne enough such that all variations in the solution are well resolved. In many applications, this assumption is not ful?lled, and then it is interesting to know if a high order method is still effective. Another problem that needs thorough analysis is the construction of boundary conditions such that both accuracy and stability is upheld. And ?nally, there has been quite a strongdevelopmentduringthe last years, inparticularwhenit comesto verygeneral and stable difference operators for application on initial–boundary value problems. The content of the book is not purely theoretical, neither is it a set of recipes for varioustypesof applications. The idea is to give an overviewof the basic theoryand constructionprinciplesfor differencemethodswithoutgoing into all details. For - ample, certain theorems are presented, but the proofs are in most cases left out. The explanation and application of the theory is illustrated by using simple model - amples. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Computer mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540749929 
830 0 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 38 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-74993-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)