Foundations of Rule Learning

Rules – the clearest, most explored and best understood form of knowledge representation – are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fürnkranz, Johannes (Συγγραφέας), Gamberger, Dragan (Συγγραφέας), Lavrač, Nada (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Cognitive Technologies,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03470nam a22005655i 4500
001 978-3-540-75197-7
003 DE-He213
005 20151204164240.0
007 cr nn 008mamaa
008 121116s2012 gw | s |||| 0|eng d
020 |a 9783540751977  |9 978-3-540-75197-7 
024 7 |a 10.1007/978-3-540-75197-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Fürnkranz, Johannes.  |e author. 
245 1 0 |a Foundations of Rule Learning  |h [electronic resource] /  |c by Johannes Fürnkranz, Dragan Gamberger, Nada Lavrač. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XVIII, 334 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Technologies,  |x 1611-2482 
505 0 |a Part I. Introduction to Rule Learning -- Machine Learning and Data Mining -- Propositional Rule Learning -- Relational Rule Learning -- Part II. Elements of Rule Learning -- Formal Framework for Rule Analysis -- Features -- Heuristics -- Pruning of Rules and Rule Sets -- Survey of Classification Rule Learning Systems Through the Analysis of Rule Learning Elements Used -- Part III. Selected Topics in Predictive Induction -- Part IV Selected Techniques and Applications. 
520 |a Rules – the clearest, most explored and best understood form of knowledge representation – are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning. The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Gamberger, Dragan.  |e author. 
700 1 |a Lavrač, Nada.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540751960 
830 0 |a Cognitive Technologies,  |x 1611-2482 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-75197-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)