Quantitative Information Fusion for Hydrological Sciences

In a rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? This book takes the angle of computational hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Cai, Xing (Επιμελητής έκδοσης), Yeh, T. -C. Jim (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Studies in Computational Intelligence, 79
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Data Fusion Methods for Integrating Data-driven Hydrological Models
  • A New Paradigm for Groundwater Modeling
  • Information Fusion using the Kalman Filter based on Karhunen-Loève Decomposition
  • Trajectory-Based Methods for Modeling and Characterization
  • The Role of Streamline Models for Dynamic Data Assimilation in Petroleum Engineering and Hydrogeology
  • Information Fusion in Regularized Inversion of Tomographic Pumping Tests
  • Advancing the Use of Satellite Rainfall Datasets for Flood Prediction in Ungauged Basins: The Role of Scale, Hydrologic Process Controls and the Global Precipitation Measurement Mission
  • Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity.