Finite Element Methods for Engineering Sciences Theoretical Approach and Problem Solving Techniques /

This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chaskalovic, Joel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03145nam a22005175i 4500
001 978-3-540-76343-7
003 DE-He213
005 20151204163552.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540763437  |9 978-3-540-76343-7 
024 7 |a 10.1007/978-3-540-76343-7  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Chaskalovic, Joel.  |e author. 
245 1 0 |a Finite Element Methods for Engineering Sciences  |h [electronic resource] :  |b Theoretical Approach and Problem Solving Techniques /  |c by Joel Chaskalovic. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XII, 255 p. 35 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Summary of Courses on Finite Elements -- Some Fundamental Classes of Finite Elements -- Variational Formulations -- Finite Elements in Deformable Solid Body Mechanics -- Finite Elements Applied to Strength of Materials -- Finite Elements Applied to Non Linear Problems. 
520 |a This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds. 
650 0 |a Engineering. 
650 0 |a Computer mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computational intelligence. 
650 0 |a Continuum mechanics. 
650 0 |a Structural mechanics. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Structural Mechanics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540763420 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-76343-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)