Subdivision Surfaces

Since their first appearance in 1974, subdivision algorithms for generating surfaces of arbitrary topology have gained widespread popularity in computer graphics and are being evaluated in engineering applications. This development was complemented by ongoing efforts to develop appropriate mathemati...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Peters, Jörg (Συγγραφέας), Reif, Ulrich (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Geometry and Computing, 3
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03138nam a22005775i 4500
001 978-3-540-76406-9
003 DE-He213
005 20151204180518.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540764069  |9 978-3-540-76406-9 
024 7 |a 10.1007/978-3-540-76406-9  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 511.1  |2 23 
100 1 |a Peters, Jörg.  |e author. 
245 1 0 |a Subdivision Surfaces  |h [electronic resource] /  |c by Jörg Peters, Ulrich Reif. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XVI, 204 p. 52 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Geometry and Computing,  |x 1866-6795 ;  |v 3 
505 0 |a and Overview -- Geometry Near Singularities -- Generalized Splines -- Subdivision Surfaces -- C1k-Subdivision Algorithms -- Case Studies of C1k-Subdivision Algorithms -- Shape Analysis and C2k-Algorithms -- Approximation and Linear Independence -- Conclusion. 
520 |a Since their first appearance in 1974, subdivision algorithms for generating surfaces of arbitrary topology have gained widespread popularity in computer graphics and are being evaluated in engineering applications. This development was complemented by ongoing efforts to develop appropriate mathematical tools for a thorough analysis, and today, many of the fascinating properties of subdivision are well understood. This book summarizes the current knowledge on the subject. It contains both meanwhile classical results as well as brand-new, unpublished material, such as a new framework for constructing C^2-algorithms. The focus of the book is on the development of a comprehensive mathematical theory, and less on algorithmic aspects. It is intended to serve researchers and engineers - both new to the beauty of the subject - as well as experts, academic teachers and graduate students or, in short, anybody who is interested in the foundations of this flourishing branch of applied geometry. 
650 0 |a Mathematics. 
650 0 |a Visualization. 
650 0 |a Geometry. 
650 0 |a Discrete mathematics. 
650 0 |a Engineering. 
650 0 |a Computational intelligence. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Industrial and Production Engineering. 
650 2 4 |a Engineering, general. 
650 2 4 |a Visualization. 
650 2 4 |a Geometry. 
650 2 4 |a Computational Intelligence. 
700 1 |a Reif, Ulrich.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540764052 
830 0 |a Geometry and Computing,  |x 1866-6795 ;  |v 3 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-76406-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)