Bond Portfolio Optimization

1 The tools of modern portfolio theory are in general use in the equity markets, either in the form of portfolio optimization software or as an accepted frame- 2 work in which the asset managers think about stock selection. In the ?xed income market on the other hand, these tools seem irrelevant or...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Puhle, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Economics and Mathematical Systems, 605
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03424nam a22005055i 4500
001 978-3-540-76593-6
003 DE-He213
005 20151204191324.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540765936  |9 978-3-540-76593-6 
024 7 |a 10.1007/978-3-540-76593-6  |2 doi 
040 |d GrThAP 
050 4 |a HG1-HG9999 
072 7 |a KFF  |2 bicssc 
072 7 |a BUS027000  |2 bisacsh 
082 0 4 |a 332  |2 23 
100 1 |a Puhle, Michael.  |e author. 
245 1 0 |a Bond Portfolio Optimization  |h [electronic resource] /  |c by Michael Puhle. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIV, 140 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Economics and Mathematical Systems,  |x 0075-8442 ;  |v 605 
505 0 |a Bond Market Terminology -- Term Structure Modeling in Continuous Time -- Static Bond Portfolio Optimization -- Dynamic Bond Portfolio Optimization in Continuous Time -- Summary and Conclusion. 
520 |a 1 The tools of modern portfolio theory are in general use in the equity markets, either in the form of portfolio optimization software or as an accepted frame- 2 work in which the asset managers think about stock selection. In the ?xed income market on the other hand, these tools seem irrelevant or inapplicable. Bond portfolios are nowadays mainly managed by a comparison of portfolio 3 4 risk measures vis ¶a vis a benchmark. The portfolio manager’s views about the future evolution of the term structure of interest rates translate th- selves directly into a positioning relative to his benchmark, taking the risks of these deviations from the benchmark into account only in a very crude 5 fashion, i.e. without really quantifying them probabilistically. This is quite surprising since sophisticated models for the evolution of interest rates are commonly used for interest rate derivatives pricing and the derivation of ?xed 6 income risk measures. Wilhelm (1992) explains the absence of modern portfolio tools in the ?xed 7 income markets with two factors: historically relatively stable interest rates and systematic di?erences between stocks and bonds that make an application of modern portfolio theory di–cult. These systematic di?erences relate mainly to the ?xed maturity of bonds. Whereas possible future stock prices become more dispersed as the time horizon widens, the bond price at maturity is 8 ?xed. This implies that the probabilistic models for stocks and bonds have 1 Starting with the seminal work of Markowitz (1952). 
650 0 |a Finance. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Economics, Mathematical. 
650 0 |a Mathematical optimization. 
650 1 4 |a Finance. 
650 2 4 |a Finance, general. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540765929 
830 0 |a Lecture Notes in Economics and Mathematical Systems,  |x 0075-8442 ;  |v 605 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-76593-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)