Algebraic Function Fields and Codes

The theory of algebraic function fields has its origins in number theory, complex analysis (compact Riemann surfaces), and algebraic geometry. Since about 1980, function fields have found surprising applications in other branches of mathematics such as coding theory, cryptography, sphere packings an...

Full description

Bibliographic Details
Main Author: Stichtenoth, Henning (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Graduate Texts in Mathematics, 254
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03208nam a22005415i 4500
001 978-3-540-76878-4
003 DE-He213
005 20151123193930.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540768784  |9 978-3-540-76878-4 
024 7 |a 10.1007/978-3-540-76878-4  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Stichtenoth, Henning.  |e author. 
245 1 0 |a Algebraic Function Fields and Codes  |h [electronic resource] /  |c by Henning Stichtenoth. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XIV, 360 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 254 
505 0 |a Foundations of the Theory of Algebraic Function Fields -- Algebraic Geometry Codes -- Extensions of Algebraic Function Fields -- Differentials of Algebraic Function Fields -- Algebraic Function Fields over Finite Constant Fields -- Examples of Algebraic Function Fields -- Asymptotic Bounds for the Number of Rational Places -- More about Algebraic Geometry Codes -- Subfield Subcodes and Trace Codes. 
520 |a The theory of algebraic function fields has its origins in number theory, complex analysis (compact Riemann surfaces), and algebraic geometry. Since about 1980, function fields have found surprising applications in other branches of mathematics such as coding theory, cryptography, sphere packings and others. The main objective of this book is to provide a purely algebraic, self-contained and in-depth exposition of the theory of function fields. This new edition, published in the series Graduate Texts in Mathematics, has been considerably expanded. Moreover, the present edition contains numerous exercises. Some of them are fairly easy and help the reader to understand the basic material. Other exercises are more advanced and cover additional material which could not be included in the text. This volume is mainly addressed to graduate students in mathematics and theoretical computer science, cryptography, coding theory and electrical engineering. 
650 0 |a Mathematics. 
650 0 |a Data structures (Computer science). 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Information theory. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Information and Communication, Circuits. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540768777 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 254 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-76878-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)