Mathematical Theory of Feynman Path Integrals An Introduction /

Feynman path integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non-relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Albeverio, Sergio A. (Συγγραφέας), Høegh-Krohn, Raphael J. (Συγγραφέας), Mazzucchi, Sonia (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Mathematics, 523
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04367nam a22006015i 4500
001 978-3-540-76956-9
003 DE-He213
005 20151204165305.0
007 cr nn 008mamaa
008 100715s2008 gw | s |||| 0|eng d
020 |a 9783540769569  |9 978-3-540-76956-9 
024 7 |a 10.1007/978-3-540-76956-9  |2 doi 
040 |d GrThAP 
050 4 |a QA431 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.45  |2 23 
100 1 |a Albeverio, Sergio A.  |e author. 
245 1 0 |a Mathematical Theory of Feynman Path Integrals  |h [electronic resource] :  |b An Introduction /  |c by Sergio A. Albeverio, Raphael J. Høegh-Krohn, Sonia Mazzucchi. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a X, 182 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 523 
505 0 |a Preface to the second edition -- Preface to the first edition -- 1.Introduction -- 2.The Fresnel Integral of Functions on a Separable Real Hilbert Spa -- 3.The Feynman Path Integral in Potential Scattering -- 4.The Fresnel Integral Relative to a Non-singular Quadratic Form -- 5.Feynman Path Integrals for the Anharmonic Oscillator -- 6.Expectations with Respect to the Ground State of the Harmonic Oscillator -- 7.Expectations with Respect to the Gibbs State of the Harmonic Oscillator -- 8.The Invariant Quasi-free States -- 9.The Feynman Hystory Integral for the Relativistic Quantum Boson Field -- 10.Some Recent Developments -- 10.1.The infinite dimensional oscillatory integral -- 10.2.Feynman path integrals for polynomially growing potentials -- 10.3.The semiclassical expansio -- 10.4.Alternative approaches to Feynman path integrals -- 10.4.1.Analytic continuation -- 10.4.2.White noise calculus -- 10.5.Recent applications -- 10.5.1.The Schroedinger equation with magnetic fields -- 10.5.2.The Schroedinger equation with time dependent potentials -- 10.5.3 .hase space Feynman path integrals -- 10.5.4.The stochastic Schroedinger equation -- 10.5.5.The Chern-Simons functional integral -- References of the first edition -- References of the second edition -- Analytic index -- List of Notations. 
520 |a Feynman path integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non-relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low-dimensional topology and differential geometry, algebraic geometry, infinite-dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments since then, an entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Integral equations. 
650 0 |a Measure theory. 
650 0 |a Operator theory. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Integral Equations. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a Høegh-Krohn, Raphael J.  |e author. 
700 1 |a Mazzucchi, Sonia.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540769545 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 523 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-76956-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)