Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

Domain decomposition methods are divide and conquer methods for the parallel and computational solution of partial differential equations of elliptic or parabolic type. They include iterative algorithms for solving the discretized equations, techniques for non-matching grid discretizations and techn...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mathew, Tarek Poonithara Abraham (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Computational Science and Engineering, 61
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03688nam a22005535i 4500
001 978-3-540-77209-5
003 DE-He213
005 20151204170453.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540772095  |9 978-3-540-77209-5 
024 7 |a 10.1007/978-3-540-77209-5  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Mathew, Tarek Poonithara Abraham.  |e author. 
245 1 0 |a Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations  |h [electronic resource] /  |c by Tarek Poonithara Abraham Mathew. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIV, 770 p. 40 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 61 
505 0 |a Decomposition Frameworks -- Schwarz Iterative Algorithms -- Schur Complement and Iterative Substructuring Algorithms -- Lagrange Multiplier Based Substructuring: FETI Method -- Computational Issues and Parallelization -- Least Squares-Control Theory: Iterative Algorithms -- Multilevel and Local Grid Refinement Methods -- Non-Self Adjoint Elliptic Equations: Iterative Methods -- Parabolic Equations -- Saddle Point Problems -- Non-Matching Grid Discretizations -- Heterogeneous Domain Decomposition Methods -- Fictitious Domain and Domain Imbedding Methods -- Variational Inequalities and Obstacle Problems -- Maximum Norm Theory -- Eigenvalue Problems -- Optimization Problems -- Helmholtz Scattering Problem. 
520 |a Domain decomposition methods are divide and conquer methods for the parallel and computational solution of partial differential equations of elliptic or parabolic type. They include iterative algorithms for solving the discretized equations, techniques for non-matching grid discretizations and techniques for heterogeneous approximations. This book serves as an introduction to this subject, with emphasis on matrix formulations. The topics studied include Schwarz, substructuring, Lagrange multiplier and least squares-control hybrid formulations, multilevel methods, non-self adjoint problems, parabolic equations, saddle point problems (Stokes, porous media and optimal control), non-matching grid discretizations, heterogeneous models, fictitious domain methods, variational inequalities, maximum norm theory, eigenvalue problems, optimization problems and the Helmholtz scattering problem. Selected convergence theory is included. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Computer mathematics. 
650 0 |a Computational intelligence. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540772057 
830 0 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 61 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-77209-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)