Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases
Data Mining (DM) is the most commonly used name to describe such computational analysis of data and the results obtained must conform to several objectives such as accuracy, comprehensibility, interest for the user etc. Though there are many sophisticated techniques developed by various interdiscipl...
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
---|---|
Άλλοι συγγραφείς: | Ghosh, Ashish (Επιμελητής έκδοσης), Dehuri, Satchidananda (Επιμελητής έκδοσης), Ghosh, Susmita (Επιμελητής έκδοσης) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2008.
|
Σειρά: | Studies in Computational Intelligence,
98 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Multi-Objective Memetic Algorithms
Έκδοση: (2009) -
Advances in Evolutionary Algorithms Theory, Design and Practice /
ανά: Ahn, Chang Wook
Έκδοση: (2006) -
Parameter Setting in Evolutionary Algorithms
Έκδοση: (2007) -
Advances in Multi-Objective Nature Inspired Computing
Έκδοση: (2010) -
Exploitation of Linkage Learning in Evolutionary Algorithms
Έκδοση: (2010)