Natural Computing in Computational Finance

Natural Computing in Computational Finance is a innovative volume containing fifteen chapters which illustrate cutting-edge applications of natural computing or agent-based modeling in modern computational finance. Following an introductory chapter the book is organized into three sections. The firs...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Brabazon, Anthony (Επιμελητής έκδοσης), O’Neill, Michael (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Έκδοση:X.
Σειρά:Studies in Computational Intelligence, 100
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Optimisation
  • Natural Computing in Computational Finance: An Introduction
  • Constrained Index Tracking under Loss Aversion Using Differential Evolution
  • An Evolutionary Approach to Asset Allocation in Defined Contribution Pension Schemes
  • Evolutionary Strategies for Building Risk-Optimal Portfolios
  • Evolutionary Stochastic Portfolio Optimization
  • Non-linear Principal Component Analysis of the Implied Volatility Smile using a Quantum-inspired Evolutionary Algorithm
  • Estimation of an EGARCH Volatility Option Pricing Model using a Bacteria Foraging Optimisation Algorithm
  • Model Induction
  • Fuzzy-Evolutionary Modeling for Single-Position Day Trading
  • Strong Typing, Variable Reduction and Bloat Control for Solving the Bankruptcy Prediction Problem Using Genetic Programming
  • Using Kalman-filtered Radial Basis Function Networks for Index Arbitrage in the Financial Markets
  • On Predictability and Profitability: Would GP Induced Trading Rules be Sensitive to the Observed Entropy of Time Series?
  • Hybrid Neural Systems in Exchange Rate Prediction
  • Agent-based Modelling
  • Evolutionary Learning of the Optimal Pricing Strategy in an Artificial Payment Card Market
  • Can Trend Followers Survive in the Long-Run% Insights from Agent-Based Modeling
  • Co-Evolutionary Multi-Agent System for Portfolio Optimization.