Finite Automata and Application to Cryptography

Finite Automata and Application to Cryptography mainly deals with the invertibility theory of finite automata and its application to cryptography. In addition, autonomous finite automata and Latin arrays, which are relative to the canonical form for one-key cryptosystems based on finite automata, ar...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tao, Renji (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02754nam a22004815i 4500
001 978-3-540-78257-5
003 DE-He213
005 20151204184243.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540782575  |9 978-3-540-78257-5 
024 7 |a 10.1007/978-3-540-78257-5  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.A25 
072 7 |a URY  |2 bicssc 
072 7 |a COM053000  |2 bisacsh 
082 0 4 |a 005.82  |2 23 
100 1 |a Tao, Renji.  |e author. 
245 1 0 |a Finite Automata and Application to Cryptography  |h [electronic resource] /  |c by Renji Tao. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a 350 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Mutual Invertibility and Search -- Ra Rb Transformation Method -- Relations Between Transformations -- Structure of Feedforward Inverses -- Some Topics on Structure Problem -- Linear Autonomous Finite Automata -- One Key Cryptosystems and Latin Arrays -- Finite Automaton Public Key Cryptosystems. 
520 |a Finite Automata and Application to Cryptography mainly deals with the invertibility theory of finite automata and its application to cryptography. In addition, autonomous finite automata and Latin arrays, which are relative to the canonical form for one-key cryptosystems based on finite automata, are also discussed. Finite automata are regarded as a natural model for ciphers. The Ra Rb transformation method is introduced to deal with the structure problem of such automata; then public key cryptosystems based on finite automata and a canonical form for one-key ciphers implementable by finite automata with bounded-error-propagation and without data expansion are proposed. The book may be used as a reference for computer science and mathematics majors, including seniors and graduate students. Renji Tao is a Professor at the Institute of Software, Chinese Academy of Sciences, Beijing. . 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Computer security. 
650 0 |a Data encryption (Computer science). 
650 0 |a Mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Encryption. 
650 2 4 |a Systems and Data Security. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Computer Communication Networks. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540782568 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-78257-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)