Arithmetical Investigations Representation Theory, Orthogonal Polynomials, and Quantum Interpolations /
In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp corr...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2008.
|
Σειρά: | Lecture Notes in Mathematics,
1941 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction: Motivations from Geometry
- Gamma and Beta Measures
- Markov Chains
- Real Beta Chain and q-Interpolation
- Ladder Structure
- q-Interpolation of Local Tate Thesis
- Pure Basis and Semi-Group
- Higher Dimensional Theory
- Real Grassmann Manifold
- p-Adic Grassmann Manifold
- q-Grassmann Manifold
- Quantum Group Uq(su(1, 1)) and the q-Hahn Basis.