Applications of Computational Intelligence in Biology Current Trends and Open Problems /

Computational Intelligence (CI) has been a tremendously active area of - search for the past decade or so. There are many successful applications of CI in many sub elds of biology, including bioinformatics, computational - nomics, protein structure prediction, or neuronal systems modeling and an- ys...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Smolinski, Tomasz G. (Επιμελητής έκδοσης), Milanova, Mariofanna G. (Επιμελητής έκδοσης), Hassanien, Aboul-Ella (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Studies in Computational Intelligence, 122
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05035nam a22005535i 4500
001 978-3-540-78534-7
003 DE-He213
005 20151204183041.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540785347  |9 978-3-540-78534-7 
024 7 |a 10.1007/978-3-540-78534-7  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
245 1 0 |a Applications of Computational Intelligence in Biology  |h [electronic resource] :  |b Current Trends and Open Problems /  |c edited by Tomasz G. Smolinski, Mariofanna G. Milanova, Aboul-Ella Hassanien. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XXVI, 428 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 122 
505 0 |a Techniques and Methodologies -- Statistically Based Pattern Discovery Techniques for Biological Data Analysis -- Rough Sets In Data Analysis: Foundations and Applications -- Evolving Solutions: The Genetic Algorithm and Evolution Strategies for Finding Optimal Parameters -- An Introduction to Multi-Objective Evolutionary Algorithms and Some of Their Potential Uses in Biology -- Current Trends -- Local Classifiers as a Method of Analysing and Classifying Signals -- Using Neural Models for Evaluation of Biological Activity of Selected Chemical Compounds -- Using Machine Vision to Detect Distinctive Behavioral Phenotypes of Thread-shape Microscopic Organism -- Contour Matching for Fish Species Recognition and Migration Monitoring -- Using Random Forests to Provide Predicted Species Distribution Maps as a Metric for Ecological Inventory & Monitoring Programs -- Visualization and Interactive Exploration of Large, Multidimensional Data Sets -- Open Problems -- Phylogenomics, Protein Family Evolution, and the Tree of Life: An Integrated Approach between Molecular Evolution and Computational Intelligence -- Computational Aspects of Aggregation in Biological Systems -- Conceptual Biology Research Supporting Platform: Current Design and Future Directions -- Computational Intelligence in Electrophysiology: Trends and Open Problems -- Cognitive Biology -- Using Broad Cognitive Models to Apply Computational Intelligence to Animal Cognition -- Epistemic Constraints on Autonomous Symbolic Representation in Natural and Artificial Agents. 
520 |a Computational Intelligence (CI) has been a tremendously active area of - search for the past decade or so. There are many successful applications of CI in many sub elds of biology, including bioinformatics, computational - nomics, protein structure prediction, or neuronal systems modeling and an- ysis. However, there still are many open problems in biology that are in d- perate need of advanced and e cient computational methodologies to deal with tremendous amounts of data that those problems are plagued by. - fortunately, biology researchers are very often unaware of the abundance of computational techniques that they could put to use to help them analyze and understand the data underlying their research inquiries. On the other hand, computational intelligence practitioners are often unfamiliar with the part- ular problems that their new, state-of-the-art algorithms could be successfully applied for. The separation between the two worlds is partially caused by the use of di erent languages in these two spheres of science, but also by the relatively small number of publications devoted solely to the purpose of fac- itating the exchange of new computational algorithms and methodologies on one hand, and the needs of the biology realm on the other. The purpose of this book is to provide a medium for such an exchange of expertise and concerns. In order to achieve the goal, we have solicited cont- butions from both computational intelligence as well as biology researchers. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Bioinformatics. 
650 0 |a Computational biology. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Bioinformatics. 
650 2 4 |a Computer Appl. in Life Sciences. 
700 1 |a Smolinski, Tomasz G.  |e editor. 
700 1 |a Milanova, Mariofanna G.  |e editor. 
700 1 |a Hassanien, Aboul-Ella.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540785330 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 122 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-78534-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)