Lectures on Advances in Combinatorics

The main focus of these lectures is basis extremal problems and inequalities – two sides of the same coin. Additionally they prepare well for approaches and methods useful and applicable in a broader mathematical context. Highlights of the book include a solution to the famous 4m-conjecture of Erdös...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ahlswede, Rudolf (Συγγραφέας), Blinovsky, Vladimir (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03315nam a22005655i 4500
001 978-3-540-78602-3
003 DE-He213
005 20151204152447.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540786023  |9 978-3-540-78602-3 
024 7 |a 10.1007/978-3-540-78602-3  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 511.1  |2 23 
100 1 |a Ahlswede, Rudolf.  |e author. 
245 1 0 |a Lectures on Advances in Combinatorics  |h [electronic resource] /  |c by Rudolf Ahlswede, Vladimir Blinovsky. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIV, 318 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Conventions and Auxiliary Results -- Intersection and Diametric Problems -- Covering, Packing, and List Codes -- Higher Level and Dimension Constrained Extremal Problems -- LYM-Related AZ-Identities, Antichain Splittings and Correlation Inequalities -- Basic Problems from Combinatorial Number Theory. 
520 |a The main focus of these lectures is basis extremal problems and inequalities – two sides of the same coin. Additionally they prepare well for approaches and methods useful and applicable in a broader mathematical context. Highlights of the book include a solution to the famous 4m-conjecture of Erdös/Ko/Rado 1938, one of the oldest problems in combinatorial extremal theory, an answer to a question of Erdös (1962) in combinatorial number theory "What is the maximal cardinality of a set of numbers smaller than n with no k+1 of its members pair wise relatively prime?", and the discovery that the AD-inequality implies more general and sharper number theoretical inequalities than for instance Behrend's inequality. Several concepts and problems in the book arise in response to or by rephrasing questions from information theory, computer science, statistical physics. The interdisciplinary character creates an atmosphere rich of incentives for new discoveries and lends Ars Combinatoria a special status in mathematics. At the end of each chapter, problems are presented in addition to exercises and sometimes conjectures that can open a reader’s eyes to new interconnections. 
650 0 |a Mathematics. 
650 0 |a Computers. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Number theory. 
650 0 |a Probabilities. 
650 0 |a Discrete mathematics. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Combinatorics. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Number Theory. 
700 1 |a Blinovsky, Vladimir.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540786016 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-78602-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)