Stochastic and Integral Geometry

Stochastic geometry has in recent years experienced considerable progress, both in its applications to other sciences and engineering, and in its theoretical foundations and mathematical expansion. This book, by two eminent specialists of the subject, provides a solid mathematical treatment of the b...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Schneider, Rolf (Συγγραφέας), Weil, Wolfgang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Probability and Its Applications,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03693nam a22005055i 4500
001 978-3-540-78859-1
003 DE-He213
005 20151204172649.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540788591  |9 978-3-540-78859-1 
024 7 |a 10.1007/978-3-540-78859-1  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Schneider, Rolf.  |e author. 
245 1 0 |a Stochastic and Integral Geometry  |h [electronic resource] /  |c by Rolf Schneider, Wolfgang Weil. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XII, 694 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications,  |x 1431-7028 
505 0 |a Foundations of Stochastic Geometry -- Prolog -- Random Closed Sets -- Point Processes -- Geometric Models -- Integral Geometry -- Averaging with Invariant Measures -- Extended Concepts of Integral Geometry -- Integral Geometric Transformations -- Selected Topics from Stochastic Geometry -- Some Geometric Probability Problems -- Mean Values for Random Sets -- Random Mosaics -- Non-stationary Models -- Facts from General Topology -- Invariant Measures -- Facts from Convex Geometry. 
520 |a Stochastic geometry has in recent years experienced considerable progress, both in its applications to other sciences and engineering, and in its theoretical foundations and mathematical expansion. This book, by two eminent specialists of the subject, provides a solid mathematical treatment of the basic models of stochastic geometry -- random sets, point processes of geometric objects (particles, flats), and random mosaics. It develops, in a measure-theoretic setting, the integral geometry for the motion and the translation group, as needed for the investigation of these models under the usual invariance assumptions. A characteristic of the book is the interplay between stochastic and geometric arguments, leading to various major results. Its main theme, once the foundations have been laid, is the quantitative investigation of the basic models. This comprises the introduction of suitable parameters, in the form of functional densities, relations between them, and approaches to their estimation. Much additional information on stochastic geometry is collected in the section notes. As a combination of probability theory and geometry, the volume is intended for readers from either field. Probabilists with interest in random spatial structures, or motivated by the prospect of applications, will find an in-depth presentation of the geometric background. Geometers can see integral geometry "at work" and may be surprised to learn how classical results from convex geometry have elegant applications in a stochastic setting. 
650 0 |a Mathematics. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Convex and Discrete Geometry. 
700 1 |a Weil, Wolfgang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540788584 
830 0 |a Probability and Its Applications,  |x 1431-7028 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-78859-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)