Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals /

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. Th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ivancevic, Vladimir G. (Συγγραφέας), Ivancevic, Tijana T. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Understanding Complex Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04564nam a22005655i 4500
001 978-3-540-79357-1
003 DE-He213
005 20151204163559.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540793571  |9 978-3-540-79357-1 
024 7 |a 10.1007/978-3-540-79357-1  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PHS  |2 bicssc 
072 7 |a PHDT  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Ivancevic, Vladimir G.  |e author. 
245 1 0 |a Complex Nonlinearity  |h [electronic resource] :  |b Chaos, Phase Transitions, Topology Change and Path Integrals /  |c by Vladimir G. Ivancevic, Tijana T. Ivancevic. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XV, 844 p. 125 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0832 
505 0 |a Basics of Nonlinear and Chaotic Dynamics -- Phase Transitions and Synergetics -- Geometry and Topology Change in Complex Systems -- Nonlinear Dynamics of Path Integrals -- Complex Nonlinearity: Combining It All Together. 
520 |a Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia. 
650 0 |a Physics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Vibration. 
650 1 4 |a Physics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Ivancevic, Tijana T.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540793564 
830 0 |a Understanding Complex Systems,  |x 1860-0832 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-79357-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)