Design and Analysis of Learning Classifier Systems A Probabilistic Approach /

This book provides a comprehensive introduction to the design and analysis of Learning Classifier Systems (LCS) from the perspective of machine learning. LCS are a family of methods for handling unsupervised learning, supervised learning and sequential decision tasks by decomposing larger problem sp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Drugowitsch, Jan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Studies in Computational Intelligence, 139
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03316nam a22004935i 4500
001 978-3-540-79866-8
003 DE-He213
005 20151204173942.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540798668  |9 978-3-540-79866-8 
024 7 |a 10.1007/978-3-540-79866-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Drugowitsch, Jan.  |e author. 
245 1 0 |a Design and Analysis of Learning Classifier Systems  |h [electronic resource] :  |b A Probabilistic Approach /  |c by Jan Drugowitsch. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIV, 267 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 139 
505 0 |a Background -- A Learning Classifier Systems Model -- A Probabilistic Model for LCS -- Training the Classifiers -- Mixing Independently Trained Classifiers -- The Optimal Set of Classifiers -- An Algorithmic Description -- Towards Reinforcement Learning with LCS -- Concluding Remarks. 
520 |a This book provides a comprehensive introduction to the design and analysis of Learning Classifier Systems (LCS) from the perspective of machine learning. LCS are a family of methods for handling unsupervised learning, supervised learning and sequential decision tasks by decomposing larger problem spaces into easy-to-handle subproblems. Contrary to commonly approaching their design and analysis from the viewpoint of evolutionary computation, this book instead promotes a probabilistic model-based approach, based on their defining question "What is an LCS supposed to learn?". Systematically following this approach, it is shown how generic machine learning methods can be applied to design LCS algorithms from the first principles of their underlying probabilistic model, which is in this book -- for illustrative purposes -- closely related to the currently prominent XCS classifier system. The approach is holistic in the sense that the uniform goal-driven design metaphor essentially covers all aspects of LCS and puts them on a solid foundation, in addition to enabling the transfer of the theoretical foundation of the various applied machine learning methods onto LCS. Thus, it does not only advance the analysis of existing LCS but also puts forward the design of new LCS within that same framework. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540798651 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 139 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-79866-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)