A Nonlinear Transfer Technique for Renorming

Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Moltó, Aníbal (Συγγραφέας), Orihuela, José (Συγγραφέας), Troyanski, Stanimir (Συγγραφέας), Valdivia, Manuel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Σειρά:Lecture Notes in Mathematics, 1951
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03012nam a22005055i 4500
001 978-3-540-85031-1
003 DE-He213
005 20151204175712.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540850311  |9 978-3-540-85031-1 
024 7 |a 10.1007/978-3-540-85031-1  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Moltó, Aníbal.  |e author. 
245 1 2 |a A Nonlinear Transfer Technique for Renorming  |h [electronic resource] /  |c by Aníbal Moltó, José Orihuela, Stanimir Troyanski, Manuel Valdivia. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XI, 148 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1951 
505 0 |a ?-Continuous and Co-?-continuous Maps -- Generalized Metric Spaces and Locally Uniformly Rotund Renormings -- ?-Slicely Continuous Maps -- Some Applications -- Some Open Problems. 
520 |a Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem. Maps from a normed space X to a metric space Y, which provide locally uniformly rotund renormings on X, are studied and a new frame for the theory is obtained, with interplay between functional analysis, optimization and topology using subdifferentials of Lipschitz functions and covering methods of metrization theory. Any one-to-one operator T from a reflexive space X into c0 (T) satisfies the authors' conditions, transferring the norm to X. Nevertheless the authors' maps can be far from linear, for instance the duality map from X to X* gives a non-linear example when the norm in X is Fréchet differentiable. This volume will be interesting for the broad spectrum of specialists working in Banach space theory, and for researchers in infinite dimensional functional analysis. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Functional Analysis. 
700 1 |a Orihuela, José.  |e author. 
700 1 |a Troyanski, Stanimir.  |e author. 
700 1 |a Valdivia, Manuel.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540850304 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1951 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-85031-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)