Conjugate Gradient Algorithms in Nonconvex Optimization

This up-to-date book is on algorithms for large-scale unconstrained and bound constrained optimization. Optimization techniques are shown from a conjugate gradient algorithm perspective. Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and l...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pytlak, Radosław (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Nonconvex Optimization and Its Applications, 89
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03592nam a22005655i 4500
001 978-3-540-85634-4
003 DE-He213
005 20151204173104.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540856344  |9 978-3-540-85634-4 
024 7 |a 10.1007/978-3-540-85634-4  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Pytlak, Radosław.  |e author. 
245 1 0 |a Conjugate Gradient Algorithms in Nonconvex Optimization  |h [electronic resource] /  |c by Radosław Pytlak. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XXVI, 478 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Nonconvex Optimization and Its Applications,  |x 1571-568X ;  |v 89 
505 0 |a Conjugate Direction Methods for Quadratic Problems -- Conjugate Gradient Methods for Nonconvex Problems -- Memoryless Quasi-Newton Methods -- Preconditioned Conjugate Gradient Algorithms -- Limited Memory Quasi-Newton Algorithms -- The Method of Shortest Residuals and Nondifferentiable Optimization -- The Method of Shortest Residuals for Differentiable Problems -- The Preconditioned Shortest Residuals Algorithm -- Optimization on a Polyhedron -- Conjugate Gradient Algorithms for Problems with Box Constraints -- Preconditioned Conjugate Gradient Algorithms for Problems with Box Constraints -- Preconditioned Conjugate Gradient Based Reduced-Hessian Methods. 
520 |a This up-to-date book is on algorithms for large-scale unconstrained and bound constrained optimization. Optimization techniques are shown from a conjugate gradient algorithm perspective. Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and limited memory quasi-Newton algorithms are presented and numerically compared to standard conjugate gradient algorithms. The special attention is paid to the methods of shortest residuals developed by the author. Several effective optimization techniques based on these methods are presented. Because of the emphasis on practical methods, as well as rigorous mathematical treatment of their convergence analysis, the book is aimed at a wide audience. It can be used by researches in optimization, graduate students in operations research, engineering, mathematics and computer science. Practitioners can benefit from numerous numerical comparisons of professional optimization codes discussed in the book. 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Calculus of variations. 
650 0 |a Quality control. 
650 0 |a Reliability. 
650 0 |a Industrial safety. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Quality Control, Reliability, Safety and Risk. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540856337 
830 0 |a Nonconvex Optimization and Its Applications,  |x 1571-568X ;  |v 89 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-85634-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)