Self-Normalized Processes Limit Theory and Statistical Applications /

Self-normalized processes are of common occurrence in probabilistic and statistical studies. A prototypical example is Student's t-statistic introduced in 1908 by Gosset, whose portrait is on the front cover. Due to the highly non-linear nature of these processes, the theory experienced a long...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Peña, Victor H. de la (Συγγραφέας), Lai, Tze Leung (Συγγραφέας), Shao, Qi-Man (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Probability and its Applications,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03737nam a22005055i 4500
001 978-3-540-85636-8
003 DE-He213
005 20151029221550.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540856368  |9 978-3-540-85636-8 
024 7 |a 10.1007/978-3-540-85636-8  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Peña, Victor H. de la.  |e author. 
245 1 0 |a Self-Normalized Processes  |h [electronic resource] :  |b Limit Theory and Statistical Applications /  |c by Victor H. de la Peña, Tze Leung Lai, Qi-Man Shao. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XIV, 275 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and its Applications,  |x 1431-7028 
505 0 |a Independent Random Variables -- Classical Limit Theorems, Inequalities and Other Tools -- Self-Normalized Large Deviations -- Weak Convergence of Self-Normalized Sums -- Stein's Method and Self-Normalized Berry–Esseen Inequality -- Self-Normalized Moderate Deviations and Laws of the Iterated Logarithm -- Cramér-Type Moderate Deviations for Self-Normalized Sums -- Self-Normalized Empirical Processes and U-Statistics -- Martingales and Dependent Random Vectors -- Martingale Inequalities and Related Tools -- A General Framework for Self-Normalization -- Pseudo-Maximization via Method of Mixtures -- Moment and Exponential Inequalities for Self-Normalized Processes -- Laws of the Iterated Logarithm for Self-Normalized Processes -- Multivariate Self-Normalized Processes with Matrix Normalization -- Statistical Applications -- The t-Statistic and Studentized Statistics -- Self-Normalization for Approximate Pivots in Bootstrapping -- Pseudo-Maximization in Likelihood and Bayesian Inference -- Sequential Analysis and Boundary Crossing Probabilities for Self-Normalized Statistics. 
520 |a Self-normalized processes are of common occurrence in probabilistic and statistical studies. A prototypical example is Student's t-statistic introduced in 1908 by Gosset, whose portrait is on the front cover. Due to the highly non-linear nature of these processes, the theory experienced a long period of slow development. In recent years there have been a number of important advances in the theory and applications of self-normalized processes. Some of these developments are closely linked to the study of central limit theorems, which imply that self-normalized processes are approximate pivots for statistical inference. The present volume covers recent developments in the area, including self-normalized large and moderate deviations, and laws of the iterated logarithms for self-normalized martingales. This is the first book that systematically treats the theory and applications of self-normalization. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Lai, Tze Leung.  |e author. 
700 1 |a Shao, Qi-Man.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540856351 
830 0 |a Probability and its Applications,  |x 1431-7028 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-85636-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)