Intelligent Text Categorization and Clustering

Automatic Text Categorization and Clustering are becoming more and more important as the amount of text in electronic format grows and the access to it becomes more necessary and widespread. Well known applications are spam filtering and web search, but a large number of everyday uses exist (intelli...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Nedjah, Nadia (Επιμελητής έκδοσης), Macedo Mourelle, Luiza de (Επιμελητής έκδοσης), Kacprzyk, Janusz (Επιμελητής έκδοσης), França, Felipe M. G. (Επιμελητής έκδοσης), De Souza, Alberto Ferreira de (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Studies in Computational Intelligence, 164
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03351nam a22005895i 4500
001 978-3-540-85644-3
003 DE-He213
005 20151204153853.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540856443  |9 978-3-540-85644-3 
024 7 |a 10.1007/978-3-540-85644-3  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
245 1 0 |a Intelligent Text Categorization and Clustering  |h [electronic resource] /  |c edited by Nadia Nedjah, Luiza de Macedo Mourelle, Janusz Kacprzyk, Felipe M. G. França, Alberto Ferreira de De Souza. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XIV, 120 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 164 
505 0 |a Gene Selection from Microarray Data -- Preprocessing Techniques for Online Handwriting Recognition -- A Simple and Fast Term Selection Procedure for Text Clustering -- Bilingual Search Engine and Tutoring System Augmented with Query Expansion -- Comparing Clustering on Symbolic Data -- Exploring a Genetic Algorithm for Hypertext Documents Clustering. 
520 |a Automatic Text Categorization and Clustering are becoming more and more important as the amount of text in electronic format grows and the access to it becomes more necessary and widespread. Well known applications are spam filtering and web search, but a large number of everyday uses exist (intelligent web search, data mining, law enforcement, etc.) Currently, researchers are employing many intelligent techniques for text categorization and clustering, ranging from support vector machines and neural networks to Bayesian inference and algebraic methods, such as Latent Semantic Indexing. This volume offers a wide spectrum of research work developed for intelligent text categorization and clustering. In the following, we give a brief introduction of the chapters that are included in this book. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Text processing (Computer science). 
650 0 |a Computational linguistics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computational Linguistics. 
650 2 4 |a Document Preparation and Text Processing. 
650 2 4 |a Language Translation and Linguistics. 
700 1 |a Nedjah, Nadia.  |e editor. 
700 1 |a Macedo Mourelle, Luiza de.  |e editor. 
700 1 |a Kacprzyk, Janusz.  |e editor. 
700 1 |a França, Felipe M. G.  |e editor. 
700 1 |a De Souza, Alberto Ferreira de.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540856436 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 164 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-85644-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)