Optimal Urban Networks via Mass Transportation

Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Buttazzo, Giuseppe (Συγγραφέας), Pratelli, Aldo (Συγγραφέας), Stepanov, Eugene (Συγγραφέας), Solimini, Sergio (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Mathematics, 1961
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03030nam a22006015i 4500
001 978-3-540-85799-0
003 DE-He213
005 20151204173125.0
007 cr nn 008mamaa
008 110406s2009 gw | s |||| 0|eng d
020 |a 9783540857990  |9 978-3-540-85799-0 
024 7 |a 10.1007/978-3-540-85799-0  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Buttazzo, Giuseppe.  |e author. 
245 1 0 |a Optimal Urban Networks via Mass Transportation  |h [electronic resource] /  |c by Giuseppe Buttazzo, Aldo Pratelli, Eugene Stepanov, Sergio Solimini. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a X, 150 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1961 
505 0 |a Problem setting -- Optimal connected networks -- Relaxed problem and existence of solutions -- Topological properties of optimal sets -- Optimal sets and geodesics in the two-dimensional case. 
520 |a Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori. 
650 0 |a Mathematics. 
650 0 |a Calculus of variations. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
700 1 |a Pratelli, Aldo.  |e author. 
700 1 |a Stepanov, Eugene.  |e author. 
700 1 |a Solimini, Sergio.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540857983 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1961 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-85799-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)