Lower Central and Dimension Series of Groups

A fundamental object of study in group theory is the lower central series of groups. Understanding its relationship with the dimension series, which consists of the subgroups determined by the augmentation powers, is a challenging task. This monograph presents an exposition of different methods for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mikhailov, Roman (Συγγραφέας), Passi, Inder Bir Singh (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Mathematics, 1952
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02582nam a22005535i 4500
001 978-3-540-85818-8
003 DE-He213
005 20151204181822.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540858188  |9 978-3-540-85818-8 
024 7 |a 10.1007/978-3-540-85818-8  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Mikhailov, Roman.  |e author. 
245 1 0 |a Lower Central and Dimension Series of Groups  |h [electronic resource] /  |c by Roman Mikhailov, Inder Bir Singh Passi. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XXII, 352 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1952 
505 0 |a Lower Central Series -- Dimension Subgroups -- Derived Series -- Augmentation Powers -- Homotopical Aspects -- Miscellanea. 
520 |a A fundamental object of study in group theory is the lower central series of groups. Understanding its relationship with the dimension series, which consists of the subgroups determined by the augmentation powers, is a challenging task. This monograph presents an exposition of different methods for investigating this relationship. In addition to group theorists, the results are also of interest to topologists and number theorists. The approach is mainly combinatorial and homological. A novel feature is an exposition of simplicial methods for the study of problems in group theory. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Group theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Associative Rings and Algebras. 
700 1 |a Passi, Inder Bir Singh.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540858171 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1952 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-85818-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)