Local Lyapunov Exponents Sublimiting Growth Rates of Linear Random Differential Equations /

Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-int...

Full description

Bibliographic Details
Main Author: Siegert, Wolfgang (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1963
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03030nam a22006135i 4500
001 978-3-540-85964-2
003 DE-He213
005 20151204175858.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540859642  |9 978-3-540-85964-2 
024 7 |a 10.1007/978-3-540-85964-2  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Siegert, Wolfgang.  |e author. 
245 1 0 |a Local Lyapunov Exponents  |h [electronic resource] :  |b Sublimiting Growth Rates of Linear Random Differential Equations /  |c by Wolfgang Siegert. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a IX, 254 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1963 
505 0 |a Linear differential systems with parameter excitation -- Locality and time scales of the underlying non-degenerate stochastic system: Freidlin-Wentzell theory -- Exit probabilities for degenerate systems -- Local Lyapunov exponents. 
520 |a Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-intensity-dependent time is trapped near one of its so-called metastable states. The local Lyapunov exponent is then introduced as the exponential growth rate of the linear system on this time scale. Unlike classical Lyapunov exponents, which involve a limit as time increases to infinity in a fixed system, here the system itself changes as the noise intensity converges, too. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential equations. 
650 0 |a Game theory. 
650 0 |a Probabilities. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 2 4 |a Genetics and Population Dynamics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540859635 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1963 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-85964-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)