Deconvolution Problems in Nonparametric Statistics

This book gives an introduction to deconvolution problems in nonparametric statistics, e.g. density estimation based on contaminated data, errors-in-variables regression, and image reconstruction. Some real-life applications are discussed while we mainly focus on methodology (description of the esti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Meister, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Statistics, 193
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02330nam a22004815i 4500
001 978-3-540-87557-4
003 DE-He213
005 20151204144025.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540875574  |9 978-3-540-87557-4 
024 7 |a 10.1007/978-3-540-87557-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Meister, Alexander.  |e author. 
245 1 0 |a Deconvolution Problems in Nonparametric Statistics  |h [electronic resource] /  |c by Alexander Meister. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a VI, 210 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Statistics,  |x 0930-0325 ;  |v 193 
505 0 |a Density Deconvolution -- Nonparametric Regression with Errors-in-Variables -- Image and Signal Reconstruction. 
520 |a This book gives an introduction to deconvolution problems in nonparametric statistics, e.g. density estimation based on contaminated data, errors-in-variables regression, and image reconstruction. Some real-life applications are discussed while we mainly focus on methodology (description of the estimation procedures) and theory (minimax convergence rates with rigorous proofs and adaptive smoothing parameter selection). In general, we have tried to present the proofs in such manner that only a low level of previous knowledge is needed. An appendix chapter on further results of Fourier analysis is also provided. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540875567 
830 0 |a Lecture Notes in Statistics,  |x 0930-0325 ;  |v 193 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-87557-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)