Algorithmic Learning Theory 19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008. Proceedings /

This book constitutes the refereed proceedings of the 19th International Conference on Algorithmic Learning Theory, ALT 2008, held in Budapest, Hungary, in October 2008, co-located with the 11th International Conference on Discovery Science, DS 2008. The 31 revised full papers presented together wit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Freund, Yoav (Επιμελητής έκδοσης), Györfi, László (Επιμελητής έκδοσης), Turán, György (Επιμελητής έκδοσης), Zeugmann, Thomas (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Computer Science, 5254
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04881nam a22005655i 4500
001 978-3-540-87987-9
003 DE-He213
005 20151204171143.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540879879  |9 978-3-540-87987-9 
024 7 |a 10.1007/978-3-540-87987-9  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Algorithmic Learning Theory  |h [electronic resource] :  |b 19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008. Proceedings /  |c edited by Yoav Freund, László Györfi, György Turán, Thomas Zeugmann. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XIII, 467 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5254 
505 0 |a Invited Papers -- On Iterative Algorithms with an Information Geometry Background -- Visual Analytics: Combining Automated Discovery with Interactive Visualizations -- Some Mathematics behind Graph Property Testing -- Finding Total and Partial Orders from Data for Seriation -- Computational Models of Neural Representations in the Human Brain -- Regular Contributions -- Generalization Bounds for Some Ordinal Regression Algorithms -- Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm -- Sample Selection Bias Correction Theory -- Exploiting Cluster-Structure to Predict the Labeling of a Graph -- A Uniform Lower Error Bound for Half-Space Learning -- Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces -- Learning and Generalization with the Information Bottleneck -- Growth Optimal Investment with Transaction Costs -- Online Regret Bounds for Markov Decision Processes with Deterministic Transitions -- On-Line Probability, Complexity and Randomness -- Prequential Randomness -- Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes for the Existence of a Predictor -- Nonparametric Independence Tests: Space Partitioning and Kernel Approaches -- Supermartingales in Prediction with Expert Advice -- Aggregating Algorithm for a Space of Analytic Functions -- Smooth Boosting for Margin-Based Ranking -- Learning with Continuous Experts Using Drifting Games -- Entropy Regularized LPBoost -- Optimally Learning Social Networks with Activations and Suppressions -- Active Learning in Multi-armed Bandits -- Query Learning and Certificates in Lattices -- Clustering with Interactive Feedback -- Active Learning of Group-Structured Environments -- Finding the Rare Cube -- Iterative Learning of Simple External Contextual Languages -- Topological Properties of Concept Spaces -- Dynamically Delayed Postdictive Completeness and Consistency in Learning -- Dynamic Modeling in Inductive Inference -- Optimal Language Learning -- Numberings Optimal for Learning -- Learning with Temporary Memory -- Erratum: Constructing Multiclass Learners from Binary Learners: A Simple Black-Box Analysis of the Generalization Errors. 
520 |a This book constitutes the refereed proceedings of the 19th International Conference on Algorithmic Learning Theory, ALT 2008, held in Budapest, Hungary, in October 2008, co-located with the 11th International Conference on Discovery Science, DS 2008. The 31 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 46 submissions. The papers are dedicated to the theoretical foundations of machine learning; they address topics such as statistical learning; probability and stochastic processes; boosting and experts; active and query learning; and inductive inference. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Computational linguistics. 
650 0 |a Application software. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Language Translation and Linguistics. 
650 2 4 |a Computer Appl. in Arts and Humanities. 
700 1 |a Freund, Yoav.  |e editor. 
700 1 |a Györfi, László.  |e editor. 
700 1 |a Turán, György.  |e editor. 
700 1 |a Zeugmann, Thomas.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540879862 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5254 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-87987-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)