Knowledge-Based Neurocomputing: A Fuzzy Logic Approach
In this monograph, the authors introduce a novel fuzzy rule-base, referred to as the Fuzzy All-permutations Rule-Base (FARB). They show that inferring the FARB, using standard tools from fuzzy logic theory, yields an input-output map that is mathematically equivalent to that of an artificial neural...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2009.
|
Σειρά: | Studies in Fuzziness and Soft Computing,
234 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Περίληψη: | In this monograph, the authors introduce a novel fuzzy rule-base, referred to as the Fuzzy All-permutations Rule-Base (FARB). They show that inferring the FARB, using standard tools from fuzzy logic theory, yields an input-output map that is mathematically equivalent to that of an artificial neural network. Conversely, every standard artificial neural network has an equivalent FARB. The FARB-ANN equivalence integrates the merits of symbolic fuzzy rule-bases and sub-symbolic artificial neural networks, and yields a new approach for knowledge-based neurocomputing in artificial neural networks. |
---|---|
Φυσική περιγραφή: | XVI, 100 p. online resource. |
ISBN: | 9783540880776 |
ISSN: | 1434-9922 ; |