Learning Classifier Systems 10th International Workshop, IWLCS 2006, Seattle, MA, USA, July 8, 2006 and 11th International Workshop, IWLCS 2007, London, UK, July 8, 2007, Revised Selected Papers /

This book constitutes the thoroughly refereed joint post-conference proceedings of two consecutive International Workshops on Learning Classifier Systems that took place in Seattle, WA, USA in July 2006, and in London, UK, in July 2007 - all hosted by the Genetic and Evolutionary Computation Confere...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bacardit, Jaume (Επιμελητής έκδοσης), Bernadó-Mansilla, Ester (Επιμελητής έκδοσης), Butz, Martin V. (Επιμελητής έκδοσης), Kovacs, Tim (Επιμελητής έκδοσης), Llorà, Xavier (Επιμελητής έκδοσης), Takadama, Keiki (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Σειρά:Lecture Notes in Computer Science, 4998
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Learning Classifier Systems: Looking Back and Glimpsing Ahead
  • Knowledge Representations
  • Analysis of Population Evolution in Classifier Systems Using Symbolic Representations
  • Investigating Scaling of an Abstracted LCS Utilising Ternary and S-Expression Alphabets
  • Evolving Fuzzy Rules with UCS: Preliminary Results
  • Analysis of the System
  • A Principled Foundation for LCS
  • Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS
  • Mechanisms
  • Analysis and Improvements of the Classifier Error Estimate in XCSF
  • A Learning Classifier System with Mutual-Information-Based Fitness
  • On Lookahead and Latent Learning in Simple LCS
  • A Learning Classifier System Approach to Relational Reinforcement Learning
  • Linkage Learning, Rule Representation, and the ?-Ary Extended Compact Classifier System
  • New Directions
  • Classifier Conditions Using Gene Expression Programming
  • Evolving Classifiers Ensembles with Heterogeneous Predictors
  • Substructural Surrogates for Learning Decomposable Classification Problems
  • Empirical Evaluation of Ensemble Techniques for a Pittsburgh Learning Classifier System
  • Applications
  • Technology Extraction of Expert Operator Skills from Process Time Series Data
  • Analysing Learning Classifier Systems in Reactive and Non-reactive Robotic Tasks.