Discovery Science 11th International Conference, DS 2008, Budapest, Hungary, October 13-16, 2008. Proceedings /

This book constitutes the refereed proceedings of the 11th International Conference on Discovery Science, DS 2008, held in Budapest, Hungary, in October 2008, co-located with the 19th International Conference on Algorithmic Learning Theory, ALT 2008. The 26 revised long papers presented together wit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Jean-Fran, Jean-François (Επιμελητής έκδοσης), Berthold, Michael R. (Επιμελητής έκδοσης), Horváth, Tamás (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Σειρά:Lecture Notes in Computer Science, 5255
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05458nam a22006015i 4500
001 978-3-540-88411-8
003 DE-He213
005 20151204180935.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540884118  |9 978-3-540-88411-8 
024 7 |a 10.1007/978-3-540-88411-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Discovery Science  |h [electronic resource] :  |b 11th International Conference, DS 2008, Budapest, Hungary, October 13-16, 2008. Proceedings /  |c edited by Jean-François Jean-Fran, Michael R. Berthold, Tamás Horváth. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 348 p. 96 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5255 
505 0 |a Invited Papers -- On Iterative Algorithms with an Information Geometry Background -- Visual Analytics: Combining Automated Discovery with Interactive Visualizations -- Some Mathematics Behind Graph Property Testing -- Finding Total and Partial Orders from Data for Seriation -- Computational Models of Neural Representations in the Human Brain -- Learning -- Unsupervised Classifier Selection Based on Two-Sample Test -- An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics -- Learning Model Trees from Data Streams -- Empirical Asymmetric Selective Transfer in Multi-objective Decision Trees -- Ensemble-Trees: Leveraging Ensemble Power Inside Decision Trees -- A Comparison between Neural Network Methods for Learning Aggregate Functions -- Feature Selection -- Smoothed Prediction of the Onset of Tree Stem Radius Increase Based on Temperature Patterns -- Feature Selection in Taxonomies with Applications to Paleontology -- Associations -- Deduction Schemes for Association Rules -- Constructing Iceberg Lattices from Frequent Closures Using Generators -- Discovery Processes -- Learning from Each Other -- Comparative Evaluation of Two Systems for the Visual Navigation of Encyclopedia Knowledge Spaces -- A Framework for Knowledge Discovery in a Society of Agents -- Learning and Chemistry -- Active Learning for High Throughput Screening -- An Efficiently Computable Graph-Based Metric for the Classification of Small Molecules -- Mining Intervals of Graphs to Extract Characteristic Reaction Patterns -- Clustering -- Refining Pairwise Similarity Matrix for Cluster Ensemble Problem with Cluster Relations -- Input Noise Robustness and Sensitivity Analysis to Improve Large Datasets Clustering by Using the GRID -- An Integrated Graph and Probability Based Clustering Framework for Sequential Data -- Cluster Analysis in Remote Sensing Spectral Imagery through Graph Representation and Advanced SOM Visualization -- Structured Data -- Mining Unordered Distance-Constrained Embedded Subtrees -- Finding Frequent Patterns from Compressed Tree-Structured Data -- A Modeling Approach Using Multiple Graphs for Semi-Supervised Learning -- Text Analysis -- String Kernels Based on Variable-Length-Don’t-Care Patterns -- Unsupervised Spam Detection by Document Complexity Estimation -- A Probabilistic Neighbourhood Translation Approach for Non-standard Text Categorisation. 
520 |a This book constitutes the refereed proceedings of the 11th International Conference on Discovery Science, DS 2008, held in Budapest, Hungary, in October 2008, co-located with the 19th International Conference on Algorithmic Learning Theory, ALT 2008. The 26 revised long papers presented together with 5 invited papers were carefully reviewed and selected from 58 submissions. The papers address all current issues in the area of development and analysis of methods for intelligent data analysis, knowledge discovery and machine learning, as well as their application to scientific knowledge discovery. The papers are organized in topical sections on learning, feature selection, associations, discovery processes, learning and chemistry, clustering, structured data, and text analysis. 
650 0 |a Computer science. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 0 |a Application software. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer Appl. in Administrative Data Processing. 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences. 
700 1 |a Jean-Fran, Jean-François.  |e editor. 
700 1 |a Berthold, Michael R.  |e editor. 
700 1 |a Horváth, Tamás.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540884101 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5255 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-88411-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)