Variational Principles of Continuum Mechanics II. Applications /

The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky’s work differs from other books on the subject in focusing mostly on the ph...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Berdichevsky, Victor (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Interaction of Mechanics and Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03748nam a22005775i 4500
001 978-3-540-88469-9
003 DE-He213
005 20151125161155.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540884699  |9 978-3-540-88469-9 
024 7 |a 10.1007/978-3-540-88469-9  |2 doi 
040 |d GrThAP 
050 4 |a TA405-409.3 
050 4 |a QA808.2 
072 7 |a TG  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Berdichevsky, Victor.  |e author. 
245 1 0 |a Variational Principles of Continuum Mechanics  |h [electronic resource] :  |b II. Applications /  |c by Victor Berdichevsky. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a X, 430 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
505 0 |a Some Applications of Variational Methods to Development -- Theory of Elastic Plates and Shells -- Elastic Beams -- Some Stochastic Variational Problems -- Homogenization -- Homogenization of Random Structures: a Closer View -- Some Other Applications. 
520 |a The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky’s work differs from other books on the subject in focusing mostly on the physical origin of variational principles as well as establishing their interrelations. For example, the Gibbs principles appear as a consequence of the Einstein formula for thermodynamic fluctuations rather than as the first principles of the theory of thermodynamic equilibrium. Mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for the direct study of variational problems. In addition, a thorough account of variational principles discovered in various branches of continuum mechanics is given. This book, the second volume, describes how the variational approach can be applied to constructing models of continuum media, such as the theory of elastic plates; shells and beams; shallow water theory; heterogeneous mixtures; granular materials; and turbulence. It goes on to apply the variational approach to asymptotical analysis of problems with small parameters, such as the derivation of the theory of elastic plates, shells and beams from three-dimensional elasticity theory; and the basics of homogenization theory. A theory of stochastic variational problems is considered in detail too, along with applications to the homogenization of continua with random microstructures. 
650 0 |a Engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mechanics. 
650 0 |a Fluids. 
650 0 |a Continuum mechanics. 
650 0 |a Mechanical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mechanics. 
650 2 4 |a Mechanical Engineering. 
650 2 4 |a Fluid- and Aerodynamics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540884682 
830 0 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-88469-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)