Computer Vision – ECCV 2008 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part I /

The four-volume set comprising LNCS volumes 5302/5303/5304/5305 constitutes the refereed proceedings of the 10th European Conference on Computer Vision, ECCV 2008, held in Marseille, France, in October 2008. The 243 revised papers presented were carefully reviewed and selected from a total of 871 pa...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Forsyth, David (Επιμελητής έκδοσης), Torr, Philip (Επιμελητής έκδοσης), Zisserman, Andrew (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Lecture Notes in Computer Science, 5302
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06863nam a22005895i 4500
001 978-3-540-88682-2
003 DE-He213
005 20151204190207.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 |a 9783540886822  |9 978-3-540-88682-2 
024 7 |a 10.1007/978-3-540-88682-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Computer Vision – ECCV 2008  |h [electronic resource] :  |b 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part I /  |c edited by David Forsyth, Philip Torr, Andrew Zisserman. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2008. 
300 |a XXXVII, 801 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5302 
505 0 |a Lecture by Prof. Jan Koenderink -- Something Old, Something New, Something Borrowed, Something Blue -- Recognition -- Learning to Localize Objects with Structured Output Regression -- Beyond Nouns: Exploiting Prepositions and Comparative Adjectives for Learning Visual Classifiers -- Learning Spatial Context: Using Stuff to Find Things -- Segmentation and Recognition Using Structure from Motion Point Clouds -- Poster Session I -- Keypoint Signatures for Fast Learning and Recognition -- Active Matching -- Towards Scalable Dataset Construction: An Active Learning Approach -- GeoS: Geodesic Image Segmentation -- Simultaneous Motion Detection and Background Reconstruction with a Mixed-State Conditional Markov Random Field -- Semidefinite Programming Heuristics for Surface Reconstruction Ambiguities -- Robust Optimal Pose Estimation -- Learning to Recognize Activities from the Wrong View Point -- Joint Parametric and Non-parametric Curve Evolution for Medical Image Segmentation -- Localizing Objects with Smart Dictionaries -- Weakly Supervised Object Localization with Stable Segmentations -- A Perceptual Comparison of Distance Measures for Color Constancy Algorithms -- Scale Invariant Action Recognition Using Compound Features Mined from Dense Spatio-temporal Corners -- Semi-supervised On-Line Boosting for Robust Tracking -- Reformulating and Optimizing the Mumford-Shah Functional on a Graph — A Faster, Lower Energy Solution -- Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features -- Perspective Nonrigid Shape and Motion Recovery -- Shadows in Three-Source Photometric Stereo -- Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search -- Estimating Geo-temporal Location of Stationary Cameras Using Shadow Trajectories -- An Experimental Comparison of Discrete and Continuous Shape Optimization Methods -- Image Feature Extraction Using Gradient Local Auto-Correlations -- Analysis of Building Textures for Reconstructing Partially Occluded Facades -- Nonrigid Image Registration Using Dynamic Higher-Order MRF Model -- Tracking of Abrupt Motion Using Wang-Landau Monte Carlo Estimation -- Surface Visibility Probabilities in 3D Cluttered Scenes -- A Generative Shape Regularization Model for Robust Face Alignment -- Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs -- VideoCut: Removing Irrelevant Frames by Discovering the Object of Interest -- ASN: Image Keypoint Detection from Adaptive Shape Neighborhood -- Online Sparse Matrix Gaussian Process Regression and Vision Applications -- Multi-stage Contour Based Detection of Deformable Objects -- Brain Hallucination -- Range Flow for Varying Illumination -- Some Objects Are More Equal Than Others: Measuring and Predicting Importance -- Robust Multiple Structures Estimation with J-Linkage -- Human Activity Recognition with Metric Learning -- Shape Matching by Segmentation Averaging -- Search Space Reduction for MRF Stereo -- Estimating 3D Face Model and Facial Deformation from a Single Image Based on Expression Manifold Optimization -- 3D Face Recognition by Local Shape Difference Boosting -- Efficiently Learning Random Fields for Stereo Vision with Sparse Message Passing -- Recovering Light Directions and Camera Poses from a Single Sphere -- Tracking with Dynamic Hidden-State Shape Models -- Interactive Tracking of 2D Generic Objects with Spacetime Optimization -- A Segmentation Based Variational Model for Accurate Optical Flow Estimation -- Similarity Features for Facial Event Analysis -- Building a Compact Relevant Sample Coverage for Relevance Feedback in Content-Based Image Retrieval -- Discriminative Learning for Deformable Shape Segmentation: A Comparative Study -- Discriminative Locality Alignment -- Stereo -- Efficient Dense Scene Flow from Sparse or Dense Stereo Data -- Integration of Multiview Stereo and Silhouettes Via Convex Functionals on Convex Domains -- Using Multiple Hypotheses to Improve Depth-Maps for Multi-View Stereo -- Sparse Structures in L-Infinity Norm Minimization for Structure and Motion Reconstruction. 
520 |a The four-volume set comprising LNCS volumes 5302/5303/5304/5305 constitutes the refereed proceedings of the 10th European Conference on Computer Vision, ECCV 2008, held in Marseille, France, in October 2008. The 243 revised papers presented were carefully reviewed and selected from a total of 871 papers submitted. The four books cover the entire range of current issues in computer vision. The papers are organized in topical sections on recognition, stereo, people and face recognition, object tracking, matching, learning and features, MRFs, segmentation, computational photography and active reconstruction. . 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 0 |a Application software. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Computer Graphics. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Computer Appl. in Arts and Humanities. 
700 1 |a Forsyth, David.  |e editor. 
700 1 |a Torr, Philip.  |e editor. 
700 1 |a Zisserman, Andrew.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540886815 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 5302 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-88682-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)